To investigate the feasibility of tumor type prediction with MRI radiomic image features of different brain metastases in a multiclass machine learning approach for patients with unknown primary lesion at the time of diagnosis. Materials and methods: This single-center retrospective analysis included radiomic features of 658 brain metastases from T1-weighted contrast material-enhanced, T1-weighted nonenhanced, and fluid-attenuated inversion recovery (FLAIR) images in 189 patients (101 women, 88 men; mean age, 61 years; age range, 32-85 years). Images were acquired over a 9-year period (from September 2007 through December 2016) with different MRI units, reflecting heterogeneous image data. Included metastases originated from breast cancer (n = 143), small cell lung cancer (n = 151), non-small cell lung cancer (n = 225), gastrointestinal cancer (n = 50), and melanoma (n = 89). A total of 1423 quantitative image features and basic clinical data were evaluated by using random forest machine learning algorithms. Validation was performed with model-external fivefold cross validation. Comparative analysis of 10 randomly drawn cross-validation sets verified the stability of the results. The classifier performance was compared with predictions from a respective conventional reading by two radiologists. Results: Areas under the receiver operating characteristic curve of the five-class problem ranged between 0.64 (for non-small cell lung cancer) and 0.82 (for melanoma); all P values were less than .01. Prediction performance of the classifier was superior to the radiologists' readings. Highest differences were observed for melanoma, with a 17-percentage-point gain in sensitivity compared with the sensitivity of both readers; P values were less than .02. Conclusion: Quantitative features of routine brain MR images used in a machine learning classifier provided high discriminatory accuracy in predicting the tumor type of brain metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.