In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy.
Although bone mass is a contributory risk factor for hip fracture, its distribution about the femoral neck is also important. Femoral neck biopsies were obtained from 13 females with intracapsular hip fracture (fracture: mean age 74.3 ± 2.3 years [SEM]) and 19 cadaveric samples (control: 9 males and 10 females 79.4 ± 1.7 years) and the areas of cortical and cancellous bone were quantitated in octants. In the control group, although males had larger bones than females, the proportions of cortical and cancellous bone were not different (p > 0.05) between the genders. The total amount of bone, as a proportion of bone + marrow, was significantly reduced in the fractures compared with the female controls (%Tt.Ar: fracture 27.83 ± 1.18, female control 33.62 ± 1.47; p = 0.0054). Reductions in cortical bone area occurred in all regions but particularly in the inferior, inferoanterior, and anterior octants (p < 0.05). There were no differences between cases and controls in the regional amount of cancellous bone (all regions, p > 0.178). Marked reductions in mean cortical bone width between the fracture and female control group occurred in the anterior, inferoanterior (31%), and superoposterior (25%) regions. Representing cortical widths as simple Fourier functions of the angle about the center of area (R 2 adj = 0.79) showed in the cases that there was preservation of the cortical bone in the inferior region, with the proportional loss of cortical bone being greatest in the inferoanterior and superoposterior regions. It is concluded that loss of cortical, rather than cancellous, bone predominates in cases of femoral neck fracture. This loss occurs primarily along the inferoanterior to superoposterior axis. As this axis bears the greatest strain during a fall, it is hypothesized that specific thinning of the cortex in these regions leads to an exaggerated propensity to fracture in those so affected, above that resulting from an equivalent general decrease in bone mass. (J Bone Miner Res 1999;14:111-119)
We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (CHN)PbI, and dodecylammonium (DA) lead iodide, (CHN)PbI, by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DAPbI. DFT simulations of the HAPbI crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important.
The pathophysiology of bone loss associated with inflammatory bowel disease has not been clearly defined. In this study we have performed a detailed histomorphometric analysis of iliac crest bone obtained from 19 patients with inflammatory bowel disease in whom a diagnosis of osteoporosis had been made. Eleven subjects were receiving prednisolone at the time of their biopsy. Comparison with control values demonstrated a highly significant reduction in trabecular bone area in the patient group (p < 0.001). Wall width, adjusted appositional rate and bone formation rate were all significantly reduced in the patient group (p < 0.001) and the formation period was significantly increased (p < 0.001). Resorption cavities were slightly smaller in the patient group, differences in maximum cavity depth and cavity length achieving statistical significance (p < 0.005 and p < 0.05 respectively). The mineral appositional rate was significantly reduced in the patients with inflammatory bowel disease (p < 0.001) and the mineralization lag time significantly increased (p < 0.001); however, osteoid area, perimeter and seam width were not significantly different from controls. These results demonstrate that osteoporosis associated with inflammatory bowel disease is characterized by reduced bone formation at the cellular and tissue level; the proportionately greater change in wall width than in resorption cavity depth is consistent with a negative remodelling balance. Although none of the patients had osteomalacia as defined by the criteria of increased osteoid seam width and mineralization lag time, the higher mineralization lag time in the patient group indicates a mild mineralization defect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.