The circumferential incremental Young's modulus was measured in 59 major arteries of both "young" (less than 35 years of age) and "old" (greater than 35 years of age) subjects. Dynamic measurements of wall elasticity and viscosity were made which indicated a high viscosity in the femoral arteries. This was attributed to their high content of muscle. Although the "young" group showed, at any given pressure, an increasing wall stiffness towards the periphery, in "old" arteries, an opposite trend was found. When dimensional changes (radius and wall thickness) in the "old" group were considered it was apparent that at all sites the arterial wall tissue became weaker with age. Nevertheless, as a consequence of these dimensional changes the impedance characteristics of the old arterial tree still retained the nonuniformity (an increase towards the periphery) of the "young" which has considerable haemodynamic advantage.
Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization--citrate and hydroxycitrate--exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation of calcium oxalate monohydrate nucleation as is citrate. Our findings support exploration of the clinical potential of hydroxycitrate as an alternative treatment to citrate for kidney stones.
We have shown from both simulations and experiments that zwitterion functionalized carbon nanotubes (CNTs) can be used to construct highly efficient desalination membranes. Our simulations predicted that zwitterion functional groups at the ends of CNTs allow a high flux of water, while rejecting essentially all ions. We have synthesized zwitterion functionalized CNT/polyamide nanocomposite membranes with varying loadings of CNTs and assessed these membranes for water desalination. The CNTs within the polyamide layer were partially aligned through a high-vacuum filtration step during membrane synthesis. Addition of zwitterion functionalized CNTs into a polyamide membrane increased both the flux of water and the salt rejection ratio. The flux of water was found to increase by more than a factor of 4, from 6.8 to 28.7 GFD (gallons per square foot per day), as the fraction of CNTs was increased from 0 to 20 wt %. Importantly, the ion rejection ratio increased slightly from 97.6% to 98.6%. Thus, the nanotubes imparted an additional transport mechanism to the polyamide membrane, having higher flow rate and the same or slightly better selectivity. Simulations show that when two zwitterions are attached to each end of CNTs having diameters of about 15 Å, the ion rejection ratio is essentially 100%. In contrast, the rejection ratio for nonfunctionalized CNTs is about 0%, and roughly 20% for CNTs having five carboxylic acid groups per end. The increase in ion rejection for the zwitterion functionalized CNTs is due to a combination of steric hindrance from the functional groups partially blocking the tube ends and electrostatic repulsion between functional groups and ions, with steric effects dominating. Theoretical predictions indicate that an ideal CNT/polymer membrane having a loading of 20 wt % CNTs would have a maximum flux of about 20000 GFD at the conditions of our experiments.
Changes to surface motifs provide precise tailoring of nanoparticle properties.
A new approach to coherent detection is demonstrated which achieves the same high sensitivity as homodyne detection but without the need to phase lock the local oscillator laser. In addition, 1470 ps/nm of chromatic dispersion is compensated with zero net penalty by electronic domain equalization, a result which has not been achieved before because zero-penalty equalization is not possible after direct detection. The method proposes the use of high-speed digital signal processing technology, and the experimental results are obtained using burst-mode sampling followed by offline signal processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.