Biofluorescence has been detected in several nocturnal-crepuscular organisms from invertebrates to birds and mammals. Biofluorescence in mammals has been detected across the phylogeny, including the monotreme duck-billed platypus (Ornithorhyncus anatinus), marsupial opossums (Didelphidae), and New World placental flying squirrels (Gluacomys spp.). Here, we document vivid biofluorescence of springhare (Pedetidae) in both museum specimens and captive individuals—the first documented biofluorescence of an Old World placental mammal. We explore the variation in biofluorescence across our sample and characterize its physical and chemical properties. The striking visual patterning and intensity of color shift was unique relative to biofluorescence found in other mammals. We establish that biofluorescence in springhare likely originates within the cuticle of the hair fiber and emanates, at least partially, from several fluorescent porphyrins and potentially one unassigned molecule absent from our standard porphyrin mixture. This discovery further supports the hypothesis that biofluorescence may be ecologically important for nocturnal-crepuscular mammals and suggests that it may be more broadly distributed throughout Mammalia than previously thought.
Iron porphyrins are the active sites of many natural and artificial catalysts, and their photoinduced dynamics have been described as either relaxation into a vibrationally hot ground state or as a cascade through metal-centered states. In this work, we directly probe the metal center of iron(III) tetraphenyl porphyrin chloride (FeTPPCl) using femtosecond M-edge X-ray absorption near-edge structure (XANES) spectroscopy. Photoexcitation at 400 nm produces a (π,π*) state that evolves in 70 fs to an iron(II) ligand-to-metal charge transfer (LMCT) state. The LMCT state relaxes to a vibrationally hot ground state in 1.13 ps, without involvement of (d,d) intermediates. The tabletop extreme-ultraviolet probe, combined with semiempirical ligand field multiplet calculations, clearly distinguishes between metal-centered and ligand-centered excited states and resolves competing accounts of Fe(III) porphyrin relaxation. This work introduces tabletop M-edge XANES as a valuable tool for measuring femtosecond dynamics of molecular transition metal complexes in the condensed phase.
The occurrence of biofluorescence across Mammalia is an area of active study. We examined three specimens of the platypus (Ornithorhynchus anatinus) from Tasmania and New South Wales, Australia, housed in the Field Museum of Natural History (Chicago, Illinois, USA) and the University of Nebraska State Museum (Lincoln, Nebraska, USA) under visible light and ultraviolet (UV) light. The pelage of the animals appeared uniformly brown under visible light and green or cyan under UV light, due to fluoresced wavelengths that peaked around 500 nm. Our observations are the first report of biofluorescence in a monotreme mammal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.