Adsorption of fibrinogen, modeled as a linear chain of touching beads of various sizes, was theoretically studied using the random sequential adsorption (RSA) model. The adsorption process was assumed to consist of two steps: (i) formation of an irreversibly bound fibrinogen monolayer under the side-on orientation, which is independent of the bulk protein concentration and (ii) formation of the reversibly bound, end-on monolayer, whose coverage was dependent on the bulk concentration. Calculation based on the RSA model showed that the maximum surface concentration of the end-on (reversible) monolayer equals N(⊥∞) = 6.13 × 10(3) μm(-2) which is much larger than the previously found value for the side-on (irreversible) monolayer, equal to N(∞) = 2.27 × 10(3) μm(-2). Hence, the maximum surface concentration of fibrinogen in both orientations is determined to be 8.40 × 10(3) μm(-2) corresponding to the protein coverage of 5.70 mg m(-2) assuming 20% hydration. Additionally, the surface blocking function (ASF) was determined for the end-on fibrinogen adsorption, approximated for the entire range of coverage by the interpolating polynomial. For the coverage approaching the jamming limit, the surface blocking function (ASF) was shown to vanish proportionally to (θ(⊥∞) - θ(⊥))(2). These calculation allowed one to theoretically predict adsorption isotherms for the end-on regime of fibrinogen and adsorption kinetics under various transport conditions (diffusion and convection). Using these theoretical results, a quantitative interpretation of experimental data obtained by TIRF and ellipsometry was successfully performed. The equilibrium adsorption constant for the end-on adsorption regime was found to be 8.04 × 10(-3) m. On the basis of this value, the depth of the adsorption energy minimum, equal to -17.4 kT, was predicted, which corresponds to ΔG = -41.8 kJ mol(-1). This is in accordance with adsorption energy derived as the sum of the van der Waals and electrostatic interactions. Besides having significance for predicting fibrinogen adsorption, theoretical results derived in this work also have implications for basic science providing information on mechanisms of anisotropic protein molecule adsorption on heterogeneous surfaces.
Irreversible side-on adsorption of fibrinogen, modeled as a linear chain of touching beads of various size, was studied theoretically using the random sequential adsorption (RSA) model. Numerical simulation of the Monte Carlo type enabled one to determine the dependence of the surface blocking function (available surface function) on the protein coverage. These numerical results were interpolated using analytical functions based on a polynomial expansion. The dependence of the jamming coverage on the size of the simulation area was also determined. By an extrapolation of these results to the infinite area size, the maximum surface concentration of fibrinogen for the side-on adsorption was determined to be 2.26 Â 10 3 μm -2 . This corresponds to a jamming coverage θ ¥ of 0.29. It was shown that the blocking function can well be approximated in the limit of high coverage by the dependence C(θ ¥ -θ) 4 . Using this interpolating expression, the kinetics of fibrinogen adsorption under convection and diffusion transport conditions were evaluated for various bulk concentrations of the protein. These kinetic curves were derived by numerically solving the mass transport equation in the bulk with the blocking function used as a nonlinear boundary condition at the interface. It was shown that our theoretical results are in agreement with experimental kinetic data obtained by AFM, ellipsometry, and other techniques for hydrophilic surfaces in the limit of low bulk fibrinogen concentration.
The adsorption of human serum fibrinogen on polystyrene latex particles was studied using the microelectrophoretic and concentration depletion methods. Measurements were carried out for pH 3.5 and an ionic strength range of 10(-3) to 0.15 M NaCl. The electrophoretic mobility of latex was determined as a function of the amount of adsorbed fibrinogen (surface concentration). A monotonic increase in the electrophoretic mobility (zeta potential) of the latex was observed, indicating a significant adsorption of fibrinogen on latex for all ionic strengths. No changes in the latex mobility were observed for prolonged time periods, suggesting the irreversibility of fibrinogen adsorption. The maximum coverage of fibrinogen on latex particles was precisely determined using the depletion method. The residual protein concentration after making contact with latex particles was determined by electrokinetic measurements and AFM imaging where the surface coverage of fibrinogen on mica was quantitatively determined. The maximum fibrinogen coverage increased monotonically with ionic strength from 1.8 mg m(-2) for 10(-3) M NaCl to 3.6 mg m(-2) for 0.15 M NaCl. The increase in the maximum coverage was interpreted in terms of the reduced electrostatic repulsion among adsorbed fibrinogen molecules. The experimental data agree with theoretical simulations made by assuming a 3D unoriented adsorption of fibrinogen. The stability of fibrinogen monolayers on latex was also determined in ionic strength cycling experiments. It was revealed that cyclic variations in NaCl concentration between 10(-3) and 0.15 M induced no changes in the latex electrophoretic mobility, suggesting that there were no irreversible molecule orientation changes in the monolayers. On the basis of these experimental data, a robust procedure of preparing fibrinogen monolayers on latex particles of well-controlled coverage was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.