Background and Methods: Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. Results: We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. Conclusions: Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.
Oxidative stress is a condition determined by an imbalance between antioxidant and oxidative factors. Oxidative stress can have serious consequences on our organism. Indeed, it causes both necrosis and cell apoptosis, determining cellular aging, increased carcinogenesis, vascular stiffening, increased autoimmune diseases, and muscle decay. In the context of pediatric syndromes, oxidative stress could play a role in the first order. In fact, our review of the literature showed that in some pathologies, such as fetal alcohol spectrum disorders, oxidative stress related to the intake of ethanol during pregnancy is a main etiological factor determining the associated clinical syndrome. On the contrary, in Williams syndrome, Down syndrome, Marfan syndrome, Gaucher syndrome, ataxia-telangiectasia, autistic spectrum disorder, Fanconi’s anemia, and primitive immunodeficiencies, the increase in oxidative stress is directly associated with the genetic alterations that cause the same pathologies. Although further studies are needed to better understand the relationship between oxidative stress and pediatric diseases, a better knowledge of this crucial issue encourages future therapeutic strategies.
DiGeorge syndrome (DGS) is a rare genetic disease caused by microdeletions of the 22q11.2 region (DGS1). A haploinsufficiency at 10p level has been proposed also as a DGS cause (DGS2). Clinical manifestations are variable. The most frequent features are thymic hypoplasia or aplasia with consequent immune deficiency, cardiac malformations, hypoparathyroidism, facial and palatine abnormalities, variable degrees of cognitive impairment and psychiatric disorders. The specific aim of this descriptive report is to discuss the correlation between oxidative stress and neuroinflammation in DGS patients with microdeletions of the 22q11.2 region. The deleted chromosomic region maps various genes involved in mitochondrial metabolisms, such as DGCR8 and TXNRD2, that could lead to reactive oxygen species (ROS) increased production and antioxidant depletion. Furthermore, increased levels of ROS in mitochondria would lead to the destruction of the projection neurons in the cerebral cortex with consequent neurocognitive impairment. Finally, the increase in modified protein belonging to the family of sulfoxide compounds and hexoses, acting as inhibitors of the IV and V mitochondria complex, could result in direct ROS overproduction. Neuroinflammation in DGS individuals could be directly related to the development of the syndrome’s characteristic psychiatric and cognitive disorders. In patients with psychotic disorders, the most frequent psychiatric manifestation in DGS, Th-17, Th-1 and Th-2 cells are increased with consequent elevation of proinflammatory cytokine IL-6 and IL1β. In patients with anxiety disorders, both CD3 and CD4 are increased. Some patients with autism spectrum disorders (ASDs) have an augmented level of proinflammatory cytokines IL-12, IL-6 and IL-1β, while IFNγ and the anti-inflammatory cytokine IL-10 seem to be reduced. Other data proposed that altered synaptic plasticity could be directly involved in DGS cognitive disorders. In conclusion, the use of antioxidants for restoring mitochondrial functionality in DGS could be a useful tool to protect cortical connectivity and cognitive behavior.
Gender dysphoria is a clinical condition characterized by significant distress due to the discordance between biological sex and gender identity. Currently, gender dysphoria is also found more frequently in children and adolescents, thanks to greater social sensibleness and new therapeutic possibilities. In fact, it is estimated that the prevalence of gender dysphoria in pediatric age is between 0.5% and 2% based on the statistics of the various countries. Therefore, the pediatrician cannot fail to update himself on these issues and above all should be the reference figure in the management of these patients. Even if the patient must be directed to a referral center and be followed up by a multidisciplinary team, the treating pediatrician will care to coordinate the clinical and therapeutic framework. The aim of the present report is therefore to integrate literature data with our clinical experience to propose a new clinical approach in which the pediatrician should be the reference in the care of these patients, directing them towards the best therapeutic approach and staying in contact with the specialists of the referral center.
Autoimmune polyendocrine syndromes (APSs) encompass a heterogeneous group of rare diseases characterized by autoimmune activity against two or more endocrine or non-endocrine organs. Three types of APSs are reported, including both monogenic and multifactorial, heterogeneous disorders. The aim of this manuscript is to present the main clinical and epidemiological characteristics of APS-1, APS-2, and IPEX syndrome in the pediatric age, describing the mechanisms of autoimmunity and the currently available treatments for these rare conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.