Objective To evaluate the association of subretinal hyper-reflective material (SHRM) with visual acuity (VA), geographic atrophy (GA) and scar in the Comparison of Age related Macular Degeneration Treatments Trials (CATT) Design Prospective cohort study within a randomized clinical trial. Participants The 1185 participants in CATT. Methods Participants were randomly assigned to ranibizumab or bevacizumab treatment monthly or as-needed. Masked readers graded scar and GA on fundus photography and fluorescein angiography images, SHRM on time domain (TD) and spectral domain (SD) optical coherence tomography (OCT) throughout 104 weeks. Measurements of SHRM height and width in the fovea, within the center 1mm2, or outside the center 1mm2 were obtained on SD-OCT images at 56 (n=76) and 104 (n=66) weeks. VA was measured by certified examiners. Main Outcome Measures SHRM presence, location and size, and associations with VA, scar, and GA. Results Among all CATT participants, the percentage with SHRM at enrollment was 77%, decreasing to 68% at 4 weeks after treatment and 54% at 104 weeks. At 104 weeks, scar was present more often in eyes with persistent SHRM than eyes with SHRM that resolved (64% vs. 31%; p<0.0001). Among eyes with detailed evaluation of SHRM at weeks 56 (n=76) and 104 (n=66), mean [SE] VA letter score was 73.5 [2.8], 73.1 [3.4], 65.3 [3.5], and 63.9 [3.7] when SHRM was absent, present outside the central 1mm2, present within the central 1mm2 but not the foveal center, or present at the foveal center (p=0.02). SHRM was present at the foveal center in 43 (30%), within the central 1mm2 in 21 (15%) and outside the central 1mm2 in 19 (13%). When SHRM was present, the median maximum height in microns under the fovea, within the central 1 mm2 including the fovea and anywhere within the scan was 86; 120; and 122, respectively. VA was decreased with greater SHRM height and width (p<0.05). Conclusions SHRM is common in eyes with NVAMD and often persists after anti-VEGF treatment. At 2 years, eyes with scar were more likely to have SHRM than other eyes. Greater SHRM height and width were associated with worse VA. SHRM is an important morphological biomarker in eyes with NVAMD.
Purpose Describe qualitative spectral-domain optical coherence tomography (SD-OCT) characteristics of eyes classified as intermediate age-related macular degeneration (nonadvanced AMD) from Age-Related Eye Disease Study 2 (AREDS2) color fundus photography (CFP) grading. Design Prospective cross-sectional study. Participants We included 345 AREDS2 participants from 4 study centers and 122 control participants who lack CFP features of intermediate AMD. Methods Both eyes were imaged with SD-OCT and CFP. The SD-OCT macular volume scans were graded for the presence of 5 retinal, 5 subretinal, and 4 drusen characteristics. In all, 314 AREDS2 participants with ≥1 category-3 AMD eye and all controls each had 1 eye entered into SD-OCT analysis, with 63 eyes regraded to test reproducibility. Main Outcome Measures We assessed SD-OCT characteristics at baseline. Results In 98% of AMD eyes, SD-OCT grading of all characteristics was successful, detecting drusen in 99.7%, retinal pigment epithelium (RPE) atrophy/absence in 22.9%, subfoveal geographic atrophy in 2.5%, and fluid in or under the retina in 25.5%. Twenty-eight percent of AMD eyes had characteristics of possible advanced AMD on SD-OCT. Two percent of control eyes had drusen on SD-OCT. Vision loss was not correlated with foveal drusen alone, but with foveal drusen that were associated with other foveal pathology and with overlying focal hyperreflectivity. Focal hyperreflectivity over drusen, drusen cores, and hyper- or hyporeflectivity of drusen were also associated with RPE atrophy. Conclusions Macular pathologies in AMD can be qualitatively and reproducibly evaluated with SD-OCT, identifying pathologic features that are associated with vision loss, RPE atrophy, and even possibly the presence of advanced AMD not apparent on CFP. Qualitative and detailed SD-OCT analysis can contribute to the anatomic characterization of AMD in clinical studies of vision loss and disease progression.
Purpose Structural and compositional heterogeneity within drusen, composed of lipid, carbohydrates, and proteins, have been previously described. We sought to detect and define phenotypic patterns of drusen heterogeneity in the form of optical coherence tomography–reflective drusen substructures (ODS) and examine their associations with age-related macular degeneration (AMD)-related features and AMD progression. Design Retrospective analysis in a prospective study. Participants Patients with intermediate AMD (n = 349) enrolled in the multicenter Age-Related Eye Disease Study 2 (AREDS2) ancillary spectral domain optical coherence tomography (SD OCT) study. Methods Baseline SD OCT scans of 1 eye per patient were analyzed for presence of ODS. Cross-sectional and longitudinal associations of ODS presence with AMD-related features visible on SD OCT and color photographs, including drusen volume, geographic atrophy (GA), and preatrophic features, were evaluated for the entire macular region. Similar associations were also made locally within a 0.5-mm diameter region around individual ODS and corresponding control region without ODS in the same eye. Main Outcome Measures Preatrophy SD OCT changes and GA, central GA, and choroidal neovascularization (CNV) from color photographs. Results Four phenotypic subtypes of ODS were defined: low reflective cores, high reflective cores, conical debris, and split drusen. Of the 349 participants, there were 307 eligible eyes and 74 (24%) had at least 1 ODS. The ODS at baseline were associated with (1) greater macular drusen volume at baseline (P < 0.001), (2) development of preatrophic changes at year 2 (P = 0.001–0.01), and (3) development of macular GA (P = 0.005) and preatrophic changes at year 3 (P = 0.002–0.008), but not development of CNV. The ODS at baseline in a local region were associated with (1) presence of preatrophy changes at baseline (P = 0.02-0.03) and (2) development of preatrophy changes at years 2 and 3 within the region (P = 0.008-0.05). Conclusions Optical coherence tomography–reflective drusen substructures are optical coherence tomography–based biomarkers of progression to GA, but not to CNV, in eyes with intermediate AMD. Optical coherence tomography–reflective drusen substructures may be a clinical entity helpful in monitoring AMD progression and informing mechanisms in GA pathogenesis.
Purpose The appearance of geographic atrophy (GA) on color photography (CP) is preceded by specific features on spectral domain optical coherence tomography (SDOCT). We aimed to build SDOCT-based risk assessment models for 5-year new onset of GA and central GA on CP. Design Prospective longitudinal study. Participants Age-related macular degeneration (AMD) patients with bilateral large drusen and/or non-central GA, and at least one eye without advanced disease (n=317) enrolled in the multicenter Age-Related Eye Disease Study 2 (AREDS2) Ancillary SDOCT study. Methods For one eye per participant, qualitative and quantitative SDOCT variables were derived, respectively, from standardized grading and semi-automated segmentation at baseline. Up to 7 years later, annual outcomes were extracted and analyzed to fit multivariate logistic regression models and build a risk calculator. Main Outcome Measures New onset of CP-visible GA and central GA. Results Over a follow-up median of 4.0 years and among 292 AMD eyes (without advanced disease at baseline) with complete outcome data, 46 (15.8%) developed central GA. Among a subset of 265 eyes without any GA on baseline CP, 70 (26.4%) developed CP-visible GA. Final multivariate models were adjusted for age. In the model for GA, the independent predicting SDOCT factors (p <0.001 to 0.03) were (1) hyperreflective foci (HF) and (2) retinal pigment epithelium layer atrophy or absence (RPEA), followed by (3) choroidal thickness in absence of subretinal drusenoid deposits, (4) photoreceptor outer segment loss, (5) RPE drusen complex (RPEDC) volume and (6) RPEDC abnormal thinning (RAT) volume. For central GA, the independent predicting SDOCT factors (p<0.001) were (1) RAT volume, (2) intraretinal fluid or cystoid spaces, (3) HF, and (4) RPEA. The models yielded a calculator that computes the probabilities of CP-visible new-onset GA and central GA after 1 through 5 years. Conclusions For AMD eyes with large drusen and no advanced disease, we built a novel risk assessment model – based on age and SDOCT segmentation, drusen characteristics, and retinal pathology – for progression to CP-visible GA over up to 5 years. This calculator may simplify SDOCT grading and, with future validation, have a promising role as a clinical prognostic tool.
Background To compare spectral domain optical coherence tomography (SDOCT) cross-sectional images of human central retina obtained from donor eyes with and without age-related macular degeneration (AMD) to corresponding histopathology from light micrographs. To establish the utility of SDOCT for localizing pathology in the posterior eyecup, for identifying ocular disease in donor eyes, or for directing subsequent sectioning of retinal lesions for research. Methods Seven consecutive human donor eyes were selected based on age. The eyes, with the anterior segment removed, were imaged by SDOCT with a focusing aspheric lens. Four eyes were from donors with a clinical history of AMD, and three were from age-matched donors with no history of AMD. Histopathological correlation of morphological changes detected in three eyes by SDOCT was obtained for comparison to step serial-sectioned light microscopy images of the formalin-fixed, paraffin-embedded retina. A simplified imaging setup was tested on an enucleated porcine eye for comparison. Results AMD pathology was detected and localized in four eyes by SDOCT. The SDOCT images correlated with the histopathology observed by light microscopy in each sectioned eye. Pathologies included a subfoveal neovascular lesion with subretinal fluid, peripapillary neovascularization, epiretinal membrane, foveal cyst, choroidal folds, and drusen. Similar imaging was possible with the simplified setup. Conclusions SDOCT imaging identified retinal disease of the posterior eyecup in human donor eyes. Pathology detected with SDOCT was verified by light microscopy in three eyes, supporting the utility of SDOCT as a screening tool for research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.