The multiphase flow has always been a major concern since it is encountered in many industrial processes that are crucial. Gas/non-Newtonian two-phase flow is found in the upstream of the petroleum industry, where slug flow is the most common flow pattern. This flow pattern has complex hydrodynamics which is crucial to study and evaluate. This study assessed the two-phase gas/non-Newtonian fluid flow in different configurations of pipes. The model was developed using computational fluid dynamics with an orthogonal mesh to evaluate the behavior of the slug dynamics in the different configurations. The model volume of fluid was used to estimate and predict the most important parameters: pressure drop, slug frequency, and length. First, the model was validated with experimental data found in literature in a horizontal 9-m long glass pipe, with an inner diameter of 22.8 mm. The validation was made with carboxymethyl cellulose CMC-water solutions as test fluids. Two concentrations (w/w) of CMC were used: 1% and 6%. The overall average relative error of the model, taking into account the three parameters, was 24.9%. With this result, it was proceeded to evaluate the model and the effect in the slug flow in three different pipe trajectories: toe-down well, one undulation with a hump well and one undulation with a sump well. The comparison was made between results of a gas/Newtonian fluid flow and the gas/non-Newtonian fluid flow. It was found that the slug frequency and length vary in great form. The slug frequency increased in almost all the cases, and the slug length decreased.
The drying industry has grown considerably due to the tremendous demand for non-perishable food. Convective drying is one of the most popular equipment in the drying industry (food, chemical, pharmaceutical, etc.). One of the drawbacks of this equipment, when used for convective drying, is the non-uniformity in the final product quality. This study presents the development of a numerical model through Computational Fluid Dynamics (CFD). The drying chamber of a heat pump dryer is assessed from the perspective of drying air velocity and temperature profiles. The model was developed by solving different transport phenomena-related equations. The established methodology was set up to evaluate how the drying air velocity and temperature distribution affect the drying chamber. These results will define if there is a need to redesign it. The air velocity and temperature profile results show a need to redesign the chamber. Only trays 2, 3, and 4 are the ones that would achieve the drying of the products. The proposed solution is to implement air distributors or modify the tray positioning to make the drying air and temperature distribution homogeneous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.