Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5 mM). These reductions occurred within 4 to 7 days of exposure to hyperglycemia, whereas reversal occurred between 7 to 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100 μm barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K+]o from 3 to 10 mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke.
The KCNJ10 gene encoding Kir4.1 contains numerous SNPs whose molecular effects remain unknown. We investigated the functional consequences of uncharacterized SNPs (Q212R, L166Q, and G83V) on homomeric (Kir4.1) and heteromeric (Kir4.1-Kir5.1) channel function. We compared these with previously characterized EAST/SeSAME mutants (G77R and A167V) in kidney-derived tsA201 cells and in glial cell-derived C6 glioma cells. The membrane potentials of tsA201 cells expressing G77R and G83V were significantly depolarized as compared with WTKir4.1, whereas cells expressing Q212R, L166Q, and A167V were less affected. Furthermore, macroscopic currents from cells expressing WTKir4.1 and Q212R channels did not differ, whereas currents from cells expressing L166Q, G83V, G77R, and A167V were reduced. Unexpectedly, L166Q current responses were rescued when co-expressed with Kir5.1. In addition, we observed notable differences in channel activity between C6 glioma cells and tsA201 cells expressing L166Q and A167V, suggesting that there are underlying differences between cell lines in terms of Kir4.1 protein synthesis, stability, or expression at the surface. Finally, we determined spermine (SPM) sensitivity of these uncharacterized SNPs and found that Q212R-containing channels displayed reduced block by 1 M SPM. At 100 M SPM, the block was equal to or greater than WT, suggesting that the greater driving force of SPM allowed achievement of steady state. In contrast, L166Q-Kir5.1 channels achieved a higher block than WT, suggesting a more stable interaction of SPM in the deep pore cavity. Overall, our data suggest that G83V, L166Q, and Q212R residues play a pivotal role in controlling Kir4.1 channel function.Inwardly rectifying potassium (Kir) 3 channels are involved in maintenance of negative resting membrane potential (1-3), potassium buffering (1, 4), extracellular glutamate clearance (1, 4, 5), myelination (6), and cell volume regulation (3, 7). Kir4.1 channels are tetramers formed by Kir4.1 (KCNJ10) subunits. Kir4.1-containing channels are expressed in glial cells (8 -14) including in astrocytic end feet surrounding blood vessels (9, 15-17) and surrounding neuronal synapses (9, 17) where they are involved in maintenance of extracellular [K ϩ ] o and glutamate homeostasis (4,11,18). These functions are critical as inability to control [K ϩ ] o and glutamate alters neuronal excitability and may lead to seizures and neuronal death (4, 18 -20). Similarly in the retina, Kir4.1-dependent Kir channels are involved in homeostasis of extracellular potassium produced by neuronal activity in a process called potassium siphoning (9, 14, 21, 22).Kir4.1 subunits are also prominently expressed in the distal convoluted tubules in the kidneys (23) where they are involved in K ϩ recycling (24) and in the ear, specifically in the stria vascularis, where they are responsible for producing the endocochlear potential (7). Complete absence or loss-of-function mutations in these channel subunits cause EAST/SeSAME syndrome characterized by seizures, se...
Epilepsy, characterized by recurrent seizures, affects 1% of the general population. Interestingly, 25% of diabetics develop seizures with a yet unknown mechanism. Hyperglycemia downregulates inwardly rectifying potassium channel 4.1 (Kir4.1) in cultured astrocytes. Therefore, the present study aims to determine if downregulation of functional astrocytic Kir4.1 channels occurs in brains of type 2 diabetic mice and could influence hippocampal neuronal hyperexcitability. Using whole-cell patch clamp recording in hippocampal brain slices from male mice, we determined the electrophysiological properties of stratum radiatum astrocytes and CA1 pyramidal neurons. In diabetic mice, astrocytic Kir4.1 channels were functionally downregulated as evidenced by multiple characteristics including depolarized membrane potential, reduced barium-sensitive Kir currents and impaired potassium uptake capabilities of hippocampal astrocytes. Furthermore, CA1 pyramidal neurons from diabetic mice displayed increased spontaneous activity: action potential frequency was ≈9 times higher in diabetic compared with non-diabetic mice and small EPSC event frequency was significantly higher in CA1 pyramidal cells of diabetics compared to non-diabetics. These differences were apparent in control conditions and largely pronounced in response to the pro-convulsant 4-aminopyridine. Our data suggest that astrocytic dysfunction due to downregulation of Kir4.1 channels may increase seizure susceptibility by impairing astrocytic ability to maintain proper extracellular homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.