Musical training is known to modify cortical organization. Here, we show that such modifications extend to subcortical sensory structures and generalize to processing of speech. Musicians had earlier and larger brainstem responses than nonmusician controls to both speech and music stimuli presented in auditory and audiovisual conditions, evident as early as 10 ms after acoustic onset. Phaselocking to stimulus periodicity, which likely underlies perception of pitch, was enhanced in musicians and strongly correlated with length of musical practice. In addition, viewing videos of speech (lip-reading) and music (instrument being played) enhanced temporal and frequency encoding in the auditory brainstem, particularly in musicians. These findings demonstrate practice-related changes in the early sensory encoding of auditory and audiovisual information.brainstem ͉ plasticity ͉ visual ͉ multisensory language
Sharing others' emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas "tick together" in participants who are viewing similar emotional events in a movie. Participants' brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness-unpleasantness (i.e., valence) and of arousal-calmness. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower-and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel-based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals' brain areas supporting emotional sensations and understanding of another's actions, whereas high arousal directs individuals' attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding.synchronization | feeling | empathy | somatosensation H uman emotions are highly contagious. Feelings of anger and hatred may spread rapidly throughout a peaceful protest demonstration and turn it into a violent riot, whereas intense feelings of excitement and joy can sweep promptly from players to spectators in an ever-so-important football final. It is well documented that observation of others in a particular emotional state rapidly and automatically triggers the corresponding behavioral and physiological representation of that emotional state in the observer (1-3). Neuroimaging studies also have revealed common neural activation for perception and experience of states such as pain (4-6), disgust (7), and pleasure (8). This automated mapping of others' emotional states in one's own body and brain has been proposed to support social interaction via contextual understanding: Sharing others' emotional states provides the observers with a somatosensory framework that facilitates understanding their intentions and actions and allows the observers to "tune in" or "sync" with other individuals (9-11).Recent evidence suggests that during social si...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.