Background: Intra-articular calcaneal fracture remains challenging to manage. Computed tomography and fracture mapping are useful for the diagnosis and treatment of calcaneal fractures. The aim of the present study was to characterize calcaneal fracture patterns using fracture mapping.Methods: Sixty-two calcaneal fractures were retrospectively included in the study. For each case, the fracture was simulated reduction manually. The fracture lines and zones of comminution were graphically superimposed onto an intact calcaneal template to identify fracture patterns. Major fracture lines and comminution were assessed by focusing on the posterior joint facet, medial wall, lateral wall, sustentaculum tali, and anterior process.Results: The fracture lines were mostly concentrated on the area anterior to the posterior joint facet and extended medially. The longitudinal lines ran posteriorly from the angle of Gissane, and separated the sustentaculum tali and medial wall from the calcaneal tuberosity. In the lateral wall, the fracture lines extended posteriorly with some branches to the bottom of the calcaneus. No fracture lines passed through the sustentaculum tali. Fracture lines of the posterior tuberosity and anterior process were rare.Conclusions: Calcaneal fracture lines follow characteristic patterns, which are closely related to the bone structure and fracture mechanism. These fracture patterns will aid clinicians choose surgical approach and fixations in the treatment of calcaneal fractures.
The development of minimally invasive procedures and implant materials has improved the fixation strength of implants and is less traumatic in surgery. The purpose of this study was to propose a novel “double-point fixation” for calcaneal fractures and compare its biomechanical stability with the traditional “three-point fixation.” A three-dimensional finite element foot model with a Sanders type IIIAB calcaneal fracture was developed based on clinical images comprising bones, plantar fascia, ligaments, and encapsulated soft tissue. Double-point and three-point fixation resembled the surgical procedure with a volar distal radius plate and calcaneal locking plate, respectively. The stress distribution, fracture displacement, and change of the Böhler angle and Gissane’s angle were estimated by a walking simulation using the model, and the predictions between the double-point and three-point fixation were compared at heel-strike, midstance, and push-off instants. Double-point fixation demonstrated lower bone stress (103.3 vs. 199.4 MPa), but higher implant stress (1,084.0 vs. 577.9 MPa). The model displacement of double-point fixation was higher than that of three-point fixation (3.68 vs. 2.53 mm). The displacement of the posterior joint facet (0.127 vs. 0.150 mm) and the changes of the Böhler angle (0.9° vs. 1.4°) and Gissane’s angle (0.7° vs. 0.9°) in double-point fixation were comparably lower. Double-point fixation by volar distal radius plates demonstrated sufficient and favorable fixation stability and a lower risk of postoperative stress fracture, which may potentially serve as a new fixation modality for the treatment of displaced intra-articular calcaneal fractures.
Purpose: Evaluation of the internal biomechanics of the foot-and-ankle complex is challenging for the prescription of orthosis particularly for midfoot arthritis patients in which the joint condition is crucial. Methods: Using computational modeling and design optimization techniques, the objective of this study was to compare the biomechanical functions among different combinations of design factors using computer simulation. A finite element foot model was reconstructed from a midfoot arthritis patient. Orthotic designs with 3 levels for each of the 3 design factors (arch height, lateral wedge angle, and insole stiffness) contributed to 9 configurations using a fractional factorial design were tested. Results: An increase in peak plantar stress of the midfoot was facilitated by a medium arch height and wedge angle, and stiffest insole material, notwithstanding the combination neither reduced the peak plantar stress of other foot regions nor was consistent with the combination that minimized the stress of the articular cartilage. Conclusions: Insole with high arch (H = 30 mm), low stiffness (E = 1.0 MPa), and medium wedge angle (A = 5°) could minimize the stress of the cartilage at the arthritic joint (primary outcome) and could be beneficial to the patients. Also, insole stiffness predominantly influenced cartilage stress. However, secondary outcomes including the stress of the navicular and medial cuneiform and the regional plantar stress did not produce the same solution. Future studies can consider a patient-specific loading profile to further the investigation on the stabilizing effect and the attenuation of load transfer induced by the insole.
Gastrocnemius-soleus recession has been used to treat midfoot-forefoot overload syndrome and plantar fasciitis induced by equinus of the ankle joint. A controlled and selective amount of recession is imperative to maintain muscle strength and stability. The objective of this study was to conduct a parametric study to quantify the relationship between the level of recession and plantar fascia stress. A finite element model of the foot-ankle-shank complex was reconstructed from magnetic resonance and computed tomography images of a 63-year-old normal female. The model was validated by comparing modeled stresses to the measured plantar pressure distribution of the model participant during balanced standing. The midstance and push-off instants of walking stance were simulated with different levels and combinations of gastrocnemius-soleus recession resembled by different amounts of muscle forces. Halving the muscle forces at midstance reduced the average plantar fascia stress by a quarter while reducing two-third of the muscle forces at push-off reduced the average fascia stress by 18.2%.While the first ray of the plantar fascia experienced the largest stress among the five fasciae, the stress was reduced by 77.8% and 16.9% when the load was halved and reduced by twothird at midstance and push-off instants, respectively. Reduction in fascia stress implicates a lower risk of plantar fasciitis and other midfoot-forefoot overload syndromes. The outcome of this study can aid physicians to determine the amount of gastrocnemius-soleus recession towards patients with different levels of plantar fascia overstress. A detailed three-dimensional modelling on the plantar fascia is warranted in future study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.