The incorporation of second dispersed particulate phases in a polymer matrix enhances its mechanical properties. Because of the high surface to volume ratio of nanoparticles, the molecular structure of the matrix is altered at the nanoparticle/matrix interface and the volume of this perturbed region could be significant. These improved properties are produced by the interfacial interaction of the nanometric domains. In this research, epoxy matrix modified with three different sizes of nanosilica (12, 20, and 40 nm) and the effect of the interphase characteristics on the tensile properties of nanocomposites was investigated. At first, the theoretical values of the elastic modulus using a twophase mathematical model compared with the experimental data obtained from the nanocomposite samples and values between 8 and 10 nm were estimated for the interphase thickness. Afterward, considering the three-phase model, it takes into account that three different regions for interphase volume fraction, including single particles, polymer trapping, and agglomerated nanoparticles, and an equation for evaluation of interphase volume fraction are defined. Also, the interphase tensile modulus was considered continuously changing from the properties of nanoparticle to the polymer matrix properties. Finally, the overall tensile modulus of nanocomposites, which considers different key parameters including nanoparticle size, values for the interphase thickness (h), and interphase tensile modulus (E i), were calculated. The results were compared with the experimental ones of other studies and a good agreement was found. The smallest value of h as 6 nm for samples containing 12-nm diameter nanosilica and highest value of h as 8 nm for samples containing 40-nm diameter nanosilica is reported.
The behavior of interphase‐particle adhesion and interphase region around the nanoparticles can significantly affect the stress distribution and mechanical properties of polymeric nanocomposites. In this study, the elastic modulus of epoxy/silica nanocomposites is analyzed using the finite element method and different mathematical models. A nanoscale representative volume element including graded interphase, homogenous interphase, and no interphase model is implemented. Furthermore, the effect of interfacial adhesion is also considered. The final elastic modulus was clearly affected by the interphase modulus, especially at higher nanoparticle content. Under imperfect interfacial bonding, the existence of an interphase region leads to a slight increase in modulus, and in the absence of that area, the elastic modulus decreases to 3.28 GPa. In perfect bonding models, stress transferred from the matrix to interphase and, then, to nanoparticle, which led to a significant increase in elastic modulus. Unlike the imperfect bonding, the maximum stress was located in the elements along to the loading direction. A maximum 26% increase in elastic modulus for perfect bonding/graded interphase model with 6.54 vol% of nanosilica particles compared to bulk epoxy was achieved. Finally, on comparing the FEM analysis and theoretical results with the experimental data, good agreement between obtained results was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.