High crystalline Al-doped ZnO (AZO) nanopowders were prepared by in-flight treatment of ZnO and Al2O3in Radio-Frequency (RF) thermal plasma. Micron-sized (~1 μm) ZnO and Al2O3powders were mixed at Al/Zn ratios of 3.3 and 6.7 at.% and then injected into the RF thermal plasma torch along the centerline at a feeding rate of 6.6 g/min. The RF thermal plasma torch system was operated at the plate power level of ~140 kVA to evaporate the mixture oxides and the resultant vapor species were condensed into solid particles by the high flow rate of quenching gas (~7000 slpm). The FE-SEM images of the as-treated powders showed that the multipod shaped and the whisker type nanoparticles were mainly synthesized. In addition, these nanocrystalline structures were confirmed as the single phase AZO nanopowders with the hexagonal wurtzite ZnO structure by the XRD patterns and FE-TEM results with the SAED image. However, the composition changes of 0.3 and 1.0 at.% were checked for the as-synthesized AZO nanopowders at Al/Zn ratios of 3.3 and 6.7 at.%, respectively, by the XRF data, which can require the adjustment of Al/Zn in the mixture precursors for the applications of high Al doping concentrations.
Nanoscale CH3NH3PbI3 perovskite sensitizers are grown by delivering each precursor successively onto the surface of mesoporous (meso) TiO2 electrodes. Using Pb(NO3)2 ions as a lead(II) source and CH3NH3I (MAI) for methylammonium and iodide sources, repetitive cycles of the two dipping steps are successful in growing few nanometer‐sized MAPbI3 gradually on the TiO2 surface inside the meso‐TiO2 film. However, some aggregates are observed on the top surface of the meso‐TiO2 film due to slight dissolution of PbI2 and its accumulation/reaction with MAI at the top surface of the meso‐TiO2 film. To solve this inhomogeneity of the deposition, a nondestructive multiple deposition route for nanoscale MAPbI3 is suggested as a successive precursor layer adsorption and reaction (SPLAR) process where, from the second cycle of deposition, PbI2 is delivered with the help of an ionic liquid compound dissolved in dichloromethane. With this new Pb precursor in less‐polar solvents, nanoscale MAPbI3 sensitizers are grown without dissolution of preformed perovskites or formation of some aggregates at the top surface. After the third cycle of SPLAR deposition, about 7.0 nm–sized MAPbI3 sensitizers are prepared and display enhanced photovoltaic performance (7.18 ± 0.31%) compared with devices obtained from only one cycle (5.74 ± 0.30%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.