CORDIC algorithm is used for low-cost hardware implementation to calculate transcendental functions. This paper proposes a low-latency high-precision architecture for the computation of hyperbolic functions sinhx and coshx based on an improved CORDIC algorithm, that is, the QH-CORDIC. The principle, structure, and range of convergence of the QH-CORDIC are discussed, and the hardware circuit architecture of functions sinhx and coshx using the QH-CORDIC is plotted in this paper. The proposed architecture is implemented using an FPGA device, showing that it has 75% and 50% latency overhead over the two latest prior works. In the synthesis using TSMC 65 nm standard cell library, ASIC implementation results show that the proposed architecture is also superior to the two latest prior works in terms of total time (latency × period), ATP (area × total time), total energy (power × total time), energy efficiency (total energy/efficient bits), and area efficiency (efficient bits/area/total time). Comparison of related works indicates that it is much more favorable for the proposed architecture to perform high-precision floating-point computations on functions sinhx and coshx than the LUT method, stochastic computing, and other CORDIC algorithms.
Understanding the natural diet of grazing sheep can help fulfill their nutritional requirements and positively affect the quality of their meat. Emerging fecal DNA (fDNA) metabarcoding technology can provide more accurate estimates for the dietary composition of free-ranging animals. This study has shown that pasture feeding can promote deposition of n-3 polyunsaturated fatty acids (PUFAs) in Tan lambs' muscle and decrease the ratio of n-6/n-3 fatty acids (FAs), and thus, we investigated the dietary composition of grazing lambs using fDNA metabarcoding to assess the prevalence of medicinal herbage plants in their diet. Herein, based on the full-time natural pasture grazing and 4-h natural pasture grazing with indoor feeding patterns, the herbage taxa (Bassia scoparia, Euphorbia humifusa, Arnebia euchroma, and Salsola sp.) most correlated to n-3 PUFAs were highlighted to elucidate how diversification in dietary components was associated with the muscle FA profile of lambs. Our findings provide experimental evidence for future feeding research.
Measures of predictability in physiological signals based on entropy metrics have been widely used in the application domain of medical assessment and clinical diagnosis. In this paper, we propose a new entropy-based pattern learning by a combination of singular spectrum analysis (SSA) and entropy measures for assessment of physiological signals. Physiological signals are first represented as a series of SSA components, and then well-established entropy measures are extracted from the resulting SSA components that can help to facilitate the features extraction from physiological signals. The entropy measures of notable SSA components are used to form input features and fed into pattern classifier. To demonstrate its validity, applicability, and versatility, the proposed entropy-based pattern learning is used to perform medical assessments with three kinds of classical physiological signals, that is, electroencephalogram (EEG), electromyogram (EMG), and RR-interval signals. Experiments demonstrate that in all cases, the proposed entropy-based pattern learning can effectively capture specific biosignal patterns of physiological signals and achieve excellent identification performances for the assessments of EEG, EMG, and RR-interval signals. Besides, through the comparison of the identification performances for entropy-based pattern learning based on the physiological signals themselves and the SSA components, it is concluded that the discriminating power of entropy-based pattern learning based on the SSA components is much stronger than that based on the physiological signals themselves. Since it can be easily extended to any other physiological signal analysis, the proposed entropy-based pattern learning may use as an efficient approach to reveal biosignal patterns for medical assessment of physiological signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.