The styrene-butadiene-styrene ͑SBS͒ triblock copolymer was used to modify the asphalt binder. The morphology and engineering properties of the binders were investigated using transmission electron microscopy ͑TEM͒, rotational viscometer, and dynamic shear rheometer. The morphology of polymer-modified asphalt was described by the SBS concentration and the presence of microstructure of the copolymer. When the SBS concentration increased, the copolymer gradually became the dominant phase, and the transition was followed by a change in engineering properties of SBS-modified asphalt. Results from TEM showed that depending on the asphalt and copolymer source, a variety of morphology can be found. The SBS-modified binders might show a continuous asphalt phase with dispersed SBS particles, a continuous polymer phase with dispersed asphalt globules, or two interlocked continuous phases. The optimum SBS content was determined based on the formation of the critical network between asphalt and polymer. Because of this network formation, the binders showed a large increase in the complex modulus that indicates resistance to rutting. At low SBS concentrations, the Kerner model was found to be appropriate to estimate the rheological properties of SBS-modified asphalt. An adapted Kerner equation was proposed in this study to predict the complex modulus of modified asphalt at high SBS concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.