Oral bioaccessibility of soil total PAHs in small intestinal condition was significantly higher than gastric condition. AbstractAs an important human exposure pathway of contaminants, soil ingestion is of increasing concern for assessing health risk from polycyclic aromatic hydrocarbons (PAHs) in soils. A wide range of total PAH concentrations ranging from 0.112 mg g ÿ1 to 27.8 mg g ÿ1 in soils collected from different public sites, including gas stations, roadsides, bus stops, a kindergarten, primary and middle schools, a university and residential area, was detected. In general, total PAHs concentrations in soils from traffic areas were significantly higher than that from the other sites, indicating a dominant contribution from motor vehicles. Physiologically based in vitro tests were used to evaluate the oral bioaccessibility of PAHs in surface soil under different land uses in Beijing regarding both gastric and small intestinal conditions. It was found that the oral bioaccessibility of total PAHs in small intestinal condition, ranging from 9.2% to 60.5% of total PAHs in soil, was significantly higher than gastric condition, ranging from 3.9% to 54.9%. The bioaccessibility of individual PAHs in soils generally decreased with the increasing ring number of PAHs in both gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric condition to that in small intestinal condition, generally increased with increasing ring number, indicating the relatively pronounced effect of bile extract on improving bioaccessibility of PAHs with relatively high ring numbers characterized by their high K ow values. The observation that bile extract at a level higher than critical micelle concentration could reduce the surface tension of digestive juice substantially, which may cause PAHs to be available for intestinal absorption, calls for more careful establishment of reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-mouth activities.
In the elderly with atherosclerosis, hypertension and diabetes, vascular calcification and ageing are ubiquitous. Melatonin (MT) has been demonstrated to impact the cardiovascular system. In this study, we have shown that MT alleviates vascular calcification and ageing, and the underlying mechanism involved. We found that both osteogenic differentiation and senescence of vascular smooth muscle cells (VSMCs) were attenuated by MT in a MT membrane receptor‐dependent manner. Moreover, exosomes isolated from VSMCs or calcifying vascular smooth muscle cells (CVSMCs) treated with MT could be uptaken by VSMCs and attenuated the osteogenic differentiation and senescence of VSMCs or CVSMCs, respectively. Moreover, we used conditional medium from MT‐treated VSMCs and Transwell assay to confirm exosomes secreted by MT‐treated VSMCs attenuated the osteogenic differentiation and senescence of VSMCs through paracrine mechanism. We also found exosomal miR‐204/miR‐211 mediated the paracrine effect of exosomes secreted by VSMCs. A potential target of these two miRs was revealed to be BMP2. Furthermore, treatment of MT alleviated vascular calcification and ageing in 5/6‐nephrectomy plus high‐phosphate diet‐treated (5/6 NTP) mice, while these effects were partially reversed by GW4869. Exosomes derived from MT‐treated VSMCs were internalised into mouse artery detected by in vivo fluorescence image, and these exosomes reduced vascular calcification and ageing of 5/6 NTP mice, but both effects were largely abolished by inhibition of exosomal miR‐204 or miR‐211. In summary, our present study revealed that exosomes from MT‐treated VSMCs could attenuate vascular calcification and ageing in a paracrine manner through an exosomal miR‐204/miR‐211.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.