In order to study the mechanism of the dynamic disaster of rockburst in a deep coal mine and the prevention and control measures of weakening shock, the MTS815.03 servocontrolled rock mechanics test system is used to test the coal, rock, and combined specimens with the buried depth of nearly 1200 m in Xinwen Mining Area. And their mechanical properties, energy evolution, and bursting properties are studied and analyzed. The rationality of the test results is also verified by the in-situ engineering practice. The key conclusions are as follows: (1) There is a relation between the ratio of elastic modulus Ee before peak strength to descending modulus Ed after peak strength and the bursting properties. For the fractured coal, the descending modulus Ed is relatively small, and the Ee/Ed is relatively large and presents progressive ductile failure with low probability and risk of rockburst. For the less fractured rock, the descending modulus Ed is relatively large, and the Ee/Ed is relatively small and presents brittle failure, which is very similar to the characteristics of rockburst. (2) For the same type of rock, with the increase of confining pressure, the Ee/Ed gradually increases, indicating the reduction of rockburst strength. Therefore, the greater the support strength provided to the surrounding rock surface of the roadway, the smaller the failure degree of rockburst. (3) With the increase of confining pressure, after peak strength, the elastic energy of coal specimens decreases slowly, and the dissipated energy increases slowly, indicating that the increase of confining pressure can effectively limit the energy dissipation and release after coal specimen failure. So, in the in-situ engineering practice, it is an important measure to improve the surface restraint and support strength of the coal roadway for reducing the occurrence intensity and probability of rockburst. (4) The combined measures of “the mining of double liberating seam + the implementation of large-diameter pressure relief borehole in advance of working face” is the very effective way to eliminate the rockburst accidents of working face in a protected coal seam and has an important guiding significance for the safe mining of rockburst mine.
The supporting technology of retaining small coal pillars in a double roadway layout can effectively relieve the tension of mining and excavation replacement and improve the coal recovery rate. The critical difficulty is that the supporting structure on both sides of the small coal pillar has not established an effective mechanical connection, and the improvement of the bearing capacity of the coal pillar is limited, so it is difficult to achieve long-term stability control of the small coal pillar. Taking the 301 and 302 working faces of Gaojiapu Coal Mine as the engineering background, this paper first constructs the overburden structure model of the whole process of mining with small coal pillars in a double roadway layout, obtains the load calculation and strength calculation methods of small coal pillars through the analysis of the mechanism of small coal pillars surrounding rock mechanics, and gives the selection design of support parameters of anchor cables and concrete filled steel tubular piers; Secondly, the influence rules of physical and mechanical parameters such as axial load, elastic modulus and residual strength of anchor solid under different reinforcement methods and the lateral reinforcement coefficient of anchor cable are obtained through experiments. Finally, the support parameters and the coal pillar width are reasonably designed. The field monitoring data show that the reinforcement technology of a small coal pillar with anchor cable as the main body can effectively control the deformation of the small coal pillar, which has specific guiding significance and application value for solving the long-term stability control problem of small coal pillar under the influence of mining.
The paper represents a test investigation of the mechanical properties and acoustic emission (AE) characteristics of low-strength coal specimens subjected to cyclic loading and unloading. From the lab tests, the following conclusions can be obtained: (1) The axial strain is very well linear with the loading–unloading cycle number, and the circumferential and volumetric strains are approximately quadratic functions with the loading–unloading cycle number; (2) Under the same loading stress interval, the elastic modulus firstly increases and then remains stable with the loading–unloading cycle number. In addition, the higher the maximum stress of a loading–unloading cycle, the more significant the plastic strengthening effect produced by this cycle; (3) The damage calculated by the cumulative AE hit count can better reflect the fact that the damage has been increasing in the loading phase and keeps basically unchanged in the unloading phase. So, the AE hit count, as a damage variable, can better describe the damage development of coal specimens. (4) The significant fluctuation of the AE b value can be used as the precursor of coal specimen failure. Additionally, the AE b value decreases rapidly at coal specimen failure. (5) The closer to the loading–unloading cycle of coal specimen failure, the more accurate the predicted “maximum magnitude” at coal specimen failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.