BackgroundProteomic analysis of laticifer latex in Hevea brasiliensis has been received more significant attentions. However, the sticky and viscous characteristic of rubber latex as cytoplasm of laticifer cells and the complication of laticifer latex membrane systems has made it challenge to isolate high-quality proteins for 2-DE and MS.ResultsBased on the reported Borax/PVPP/Phenol (BPP) protocol, we developed an efficient method for protein preparation from different latex subcellular fractions and constructed high-resolution reference 2-DE maps. The obtained proteins from both total latex and C-serum fraction with this protocol generate more than one thousand protein spots and several hundreds of protein spots from rubber particles as well as lutoid fraction and its membranes on the CBB stained 2-DE gels. The identification of 13 representative proteins on 2-DE gels by MALDI TOF/TOF MS/MS suggested that this method is compatible with MS.ConclusionThe proteins extracted by this method are compatible with 2-DE and MS. This protein preparation protocol is expected to be used in future comparative proteomic analysis for natural rubber latex.
Rubber trees are the world's major source of natural rubber. Rubber-containing latex is obtained from the laticifer cells of the rubber tree (Hevea brasiliensis) via regular tapping. Rubber biosynthesis is a typical isoprenoid metabolic process in the laticifer cells; however, little is known about the positive feedback regulation caused by the loss of latex that occurs through tapping. In this study, we demonstrate the crucial role of jasmonate signalling in this feedback regulation. The endogenous levels of jasmonate, the expression levels of rubber biosynthesis-related genes, and the efficiency of in vitro rubber biosynthesis were found to be significantly higher in laticifer cells of regularly tapped trees than those of virgin (i.e. untapped) trees. Application of methyl jasmonate had similar effects to latex harvesting in up-regulating the rubber biosynthesis-related genes and enhancing rubber biosynthesis. The specific jasmonate signalling module in laticifer cells was identified as COI1-JAZ3-MYC2. Its activation was associated with enhanced rubber biosynthesis via up-regulation of the expression of a farnesyl pyrophosphate synthase gene and a small rubber particle protein gene. The increase in the corresponding proteins, especially that of farnesyl pyrophosphate synthase, probably contributes to the increased efficiency of rubber biosynthesis. To our knowledge, this is the first study to reveal a jasmonate signalling pathway in the regulation of rubber biosynthesis in laticifer cells. The identification of the specific jasmonate signalling module in the laticifer cells of the rubber tree may provide a basis for genetic improvement of rubber yield potential.
Lutoids are specific vacuole-based organelles within the latex-producing laticifers in rubber tree Hevea brasiliensis. Primary and secondary lutoids are found in the primary and secondary laticifers, respectively. Although both lutoid types perform similar roles in rubber particle aggregation (RPA) and latex coagulation, they vary greatly at the morphological and proteomic levels. To compare the differential proteins and determine the shared proteins of the two lutoid types, a proteomic analysis of lutoid membranes and inclusions was performed, revealing 169 proteins that were functionally classified into 14 families. Biological function analysis revealed that most of the proteins are involved in pathogen defense, chitin catabolism, and proton transport. Comparison of the gene and protein changed patterns and determination of the specific roles of several main lutoid proteins, such as glucanase, hevamine, and hevein, demonstrated that Chitinase and glucanase appeared to play crucial synergistic roles in RPA. Integrative analysis revealed a protein-based metabolic network mediating pH and ion homeostasis, defense response, and RPA in lutoids. From these findings, we developed a modified regulation model for lutoid-mediated RPA that will deepen our understanding of potential mechanisms involved in lutoid-mediated RPA and consequent latex coagulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.