A slender thread of elastic hydrogel is susceptible to a surface instability that is reminiscent of the classical Rayleigh-Plateau instability of liquid jets. The final, highly nonlinear states that are...
A slender thread of elastic hydrogel is susceptible to a surface instability that is reminiscent of the classical Rayleigh-Plateau instability of liquid jets. The final, highly nonlinear states that are observed in experiments arise from a competition between capillarity and large elastic deformations. Combining a slender analysis and fully three-dimensional numerical simulations, we present the phase map of all possible morphologies for an unstable neo-Hookean cylinder subjected to capillary forces. Interestingly, for softer cylinders we find the coexistence of two distinct configurations, namely, cylinders-on-a-string and beads-on-a-string. It is shown that for a given set of parameters, the final pattern is selected via a dynamical evolution. To capture this, we compute the dispersion relation and determine the characteristic wavelength of the dynamically selected profiles. The validity of the "slender" results is confirmed via simulations and these results are consistent with experiments on elastic and viscoelastic threads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.