The cytoplasmic viral RNA sensors RIG-I and MDA5 are important for the production of type I interferon and other inflammatory cytokines. DDX60 is an uncharacterized DEXD/H box RNA helicase similar to Saccharomyces cerevisiae Ski2, a cofactor of RNA exosome, which is a protein complex required for the integrity of cytoplasmic RNA. Expression of DDX60 increases after viral infection, and the protein localizes at the cytoplasmic region. After viral infection, the DDX60 protein binds to endogenous RIG-I protein. The protein also binds to MDA5 and LGP2 but not to the downstream factors IPS-1 and IB kinase (IKK-). Knockdown analysis shows that DDX60 is required for RIG-I-or MDA5-dependent type I interferon and interferoninducible gene expression in response to viral infection. However, DDX60 is dispensable for TLR3-mediated signaling. Purified DDX60 helicase domains possess the activity to bind to viral RNA and DNA. Expression of DDX60 promotes the binding of RIG-I to double-stranded RNA. Taken together, our analyses indicate that DDX60 is a novel antiviral helicase promoting RIG-I-like receptor-mediated signaling.RIG-I and MDA5 are cytoplasmic viral RNA sensors belonging to the group of RIG-I-like receptors (RLRs), which includes LGP2 (57-59). RIG-I recognizes RNAs from vesicular stomatitis virus (VSV), hepatitis C virus (HCV), Sendai virus (SeV), and influenza A virus (21, 36, 37), while MDA5 recognizes RNA from picornaviruses such as encephalomyocarditis virus and poliovirus (PV) (3,19,21). RLRs are also involved in the recognition of cytoplasmic B-DNA. RNA polymerase III transcribes cytoplasmic AT-rich double-stranded DNA (dsDNA), and the transcribed RNA is recognized by RIG-I (1, 6). In contrast, Choi et al. have reported that RIG-I associates with dsDNA (7).When RIG-I or MDA5 is activated by viral infection, the N-terminal caspase recruitment domains (CARDs) associate with the adaptor protein IPS-1 (also called MAVS/Cardif/ VISA) on the outer mitochondrial membrane (22,26,42,55). After this association occurs, IPS-1 activates TBK1 and IB kinase ε (IKK-ε) and signals interferon (IFN) regulatory factor 3 (IRF-3)-and NF-B-responsive genes, such as those for type I IFNs or other inflammatory cytokines (22,23,26,42,44,55).Both the helicase and C-terminal domain (CTD) of RIG-I bind to RNA, but it is the CTD that is responsible for the recognition of the 5Ј triphosphate double-stranded structure typical of viral RNA (16,39,40). Recently, Rehwinkel et al. showed that the physiological ligand of RIG-I during influenza A virus or SeV infection is the full-length viral genomic single-stranded RNA (ssRNA), which possesses base-paired regions or defective interfering (DI) genomes (35). In contrast to RIG-I, MDA5 recognizes long viral double-stranded RNA (dsRNA) (21). The RNA binding activity of the MDA5 CTD is relatively weak compared with that of the RIG-I CTD, because the basic surface of the MDA5 CTD has a more extensive flat region than the RIG-I CTD (8,45,46). Although the RNA binding activity of the MDA5 CTD is weak, t...
RNA virus infection is recognized by the RIG-I-like receptors RIG-I and MDA5, which induce antiviral responses including the production of type I interferons (IFNs) and proinflammatory cytokines. RIG-I is regulated by Lys63-linked polyubiquitination, and three E3 ubiquitin ligases, RNF125, TRIM25, and Riplet, are reported to target RIG-I for ubiquitination. To examine the importance of Riplet in vivo, we generated Riplet-deficient mice. Fibroblasts, macrophages, and conventional dendritic cells from Riplet-deficient animals were defective for the production of IFN and other cytokines in response to infection with several RNA viruses. However, Riplet was dispensable for the production of IFN in response to B-DNA and DNA virus infection. Riplet deficiency abolished RIG-I activation during RNA virus infection, and the mutant mice were more susceptible to vesicular stomatitis virus infection than wild-type mice. These data indicate that Riplet is essential for regulating RIG-I-mediated innate immune response against RNA virus infection in vivo.
The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV) abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein.
IntroductionThe status of tumor-infiltrating lymphocytes (TILs) has been recently proposed to predict clinical outcome of patients with breast cancer. We therefore studied the prognostic significance of CD8+ TILs and FOXP3+ TILs in residual tumors after neoadjuvant chemotherapy (NAC) and the alterations in these parameters before and after NAC in patients with triple-negative breast cancer (TNBC).MethodsOne hundred thirty-one TNBC patients who received NAC at three institutions were examined. CD8+ TIL and FOXP3+ TIL in residual tumors and biopsy specimens were evaluated by double-staining immunohistochemistry. The CD8+ TIL and FOXP3+ TIL status of the residual tumors was assessed, and the rates of their changes before and after NAC were calculated.ResultsTNBC patients with high CD8+ TIL levels or a high CD8/FOXP3 ratio in residual tumors had significantly better recurrence-free survival (RFS) and breast cancer-specific survival (BCSS) than patients with low values of these parameters. In multivariate analyses, CD8+ TIL exhibited strong prognostic significance for RFS, with a hazard ratio (HR) of 3.09 (95 % confidence interval (CI) 1.537–6.614, P=0.0013). The CD8/FOXP3 ratio was also significantly correlated with RFS (HR=2.07, 95 % CI 1.029–4.436, P=0.0412). TNBC with larger residual tumor size and positive lymph node status, which are known prognostic factors, was independently associated with worse RFS (P=0.0064 and P=0.0015, respectively). High CD8+ TIL levels were a markedly powerful indicator of improved BCSS, with an HR of 3.59 (95 % CI 1.499–9.581, P=0.0036). Nodal status was also associated with BCSS (P=0.0024). TNBC with a high rate of CD8+ TIL changes was associated with significantly better RFS compared with the low group (P=0.011). Higher rates of changes in the CD8/FOXP3 ratio were significantly correlated with both better RFS and BCSS compared with lower rates (P=0.011 and P=0.023, respectively).ConclusionsThis is the first study to demonstrate that high CD8+ TIL and a high CD8/FOXP3 ratio in residual tumors and increment of these parameters following NAC and accurately predict improved prognosis in TNBC patients with non-pathological complete response following NAC. These parameters could serve as a surrogate one for adjuvant treatment in patients with residual disease in the neoadjuvant setting.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-015-0632-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.