Summary
One approach to understanding the Reactive Oxygen Species (ROS)‐scavenging systems in plant stress tolerance is to manipulate the levels of antioxidant enzyme activities. In this study, we expressed in the chloroplast three such enzymes: dehydroascorbate reductase (DHAR), glutathione‐S‐transferase (GST) and glutathione reductase (GR). Homoplasmic chloroplast transformants containing either DHAR or GST, or a combination of DHAR:GR and GST:GR were generated and confirmed by molecular analysis. They exhibited the predicted changes in enzyme activities, and levels or redox state of ascorbate and glutathione. Progeny of these plants were then subjected to environmental stresses including methyl viologen (MV)‐induced oxidative stress, salt, cold and heavy metal stresses. Overexpression of these different enzymes enhanced salt and cold tolerance. The simultaneous expression of DHAR:GR and GST:GR conferred MV tolerance while expression of either transgene on its own didn’t. This study provides evidence that increasing part of the antioxidant pathway within the chloroplast enhances the plant’s ability to tolerate abiotic stress.
Summary
Chloroplast transformation of the high‐biomass tobacco variety Maryland Mammoth has been assessed as a production platform for the human immunodeficiency virus type 1 (HIV‐1) p24 antigen. Maryland Mammoth offers the prospect of higher yields of intact functional protein per unit floor area of contained glasshouse per unit time prior to flowering. Two different transformation constructs, pZSJH1p24 (for the insertion of a native p24 cDNA between the rbcL and accD genes) and pZF5 (for the insertion of a chloroplast‐codon‐optimized p24 gene between trnfM and trnG) were examined for the production of p24. Plants generated with construct pZSJH1p24 exhibited a normal green phenotype, but p24 protein accumulated only in the youngest leaves (up to approximately 350 µg/g fresh weight or ~2.5% total soluble protein) and was undetectable in mature leaves. In contrast, some of the plants generated with pZF5 exhibited a yellow phenotype (pZF5‐yellow) with detectable p24 accumulation (up to approximately 450 µg/g fresh weight or ~4.5% total soluble protein) in all leaves, regardless of age. Total protein in pZF5‐yellow leaves was reduced by ~40%. The pZF5‐yellow phenotype was associated with recombination between native and introduced direct repeat sequences of the rbcL 3′ untransformed region in the plastid genome. Chloroplast‐expressed p24 was recognized by a conformation‐dependent monoclonal antibody to p24, and p24 protein could be purified from pZF5‐yellow leaves using a simple procedure, involving ammonium sulphate precipitation and ion‐exchange chromatography, without the use of an affinity tag. The purified p24 was shown to be full length with no modifications, such as glycosylation or phosphorylation, using N‐terminal sequencing and mass spectrometry.
SummaryThe availability of foods low in sugar content yet high in flavour is critically important to millions of individuals conscious of carbohydrate intake for diabetic or dietetic purposes.Brazzein is a sweet protein occurring naturally in a tropical plant that is impractical to produce economically on a large scale, thus limiting its availability for food products. We report here the use of a maize expression system for the production of this naturally sweet protein. High expression of brazzein was obtained, with accumulation of up to 4% total soluble protein in maize seed. Purified corn brazzein possessed a sweetness intensity of up to 1200 times that of sucrose on a per weight basis. In addition, application tests demonstrated that brazzein-containing maize germ flour could be used directly in food applications, providing product sweetness. These results demonstrate that high-intensity sweet protein engineered into food products can give sweetener attributes useful in the food industry.
Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging, and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored in tobacco. Several plastid transformants were generated which contained either a Nicotiana mitochondrial superoxide dismutase (MnSOD) or an Escherichia coli glutathione reductase (gor) gene. MnSOD lines had a three-fold increase in MnSOD activity, but interestingly a five to nine-fold increase in total chloroplast SOD activity. Gor transgenic lines had up to 6 times higher GR activity and up to 8 times total glutathione levels compared to wild type tobacco. Photosynthetic capacity of transplastomic plants, as measured by chlorophyll content and variable fluorescence of PSII was equivalent to non-transformed plants.The response of these transplastomic lines to several applied stresses was examined. In a number of cases improved stress tolerance was observed. Examples include enhanced methyl viologen (Paraquat)-induced oxidative stress tolerance in Mn-superoxidase dismutase overexpressing plants, improved heavy metal tolerance in glutathione reductase expressing lines, and improved tolerance to UV-B radiation in both sets of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.