Nanocrystalline Ni0.35Zn0.65Fe2O4 mixed ferrite was obtained from the Fe2(Ni0.35,Zn0.65)(OH)4(C2H2O4)2⋅H2O complex combination that corresponds to the atomic ratio Ni(II) : Zn(II) : Fe(III) = 0.35 : 0.65 : 2; the complex combination was decomposed at 325°C and the resulting oxides mixture was annealed in the temperature range of 400–1000°C for 2 h. The thermal analysis of the synthesized complex combination was done by TG–DTA techniques. It has been shown by means of x-ray diffraction that even at 400°C Ni–Zn mixed spinel ferrite is formed with an face-centred cubic structure and a lattice parameter that is in agreement with the reported value. Thus, the formation temperature of ferrite was drastically reduced (by cca. 900°C) compared to that of the conventional ceramic method. The magnetic measurements showed the increase of the saturation magnetization σs and a maximum of the coercivity Hc of the nanocrystalline system with the increase of the annealing temperature. These changes can be attributed to the increase of the average diameter of the nano-sized crystallites from 14.6 to 46.3 nm when the temperature increases from 400°C to 1000°C. The nanocrystallites are single-domain up to ∼28 nm; above this value they have an incipient structure of Weiss domains, a result that is in agreement with the critical diameter of the single-domain deduced from theoretical calculation.
In order to obtain highly dispersed heteropolyacids (HPAs) species, H3PMo12O40 and H4PVMo11O40 were supported on various supports: silica (Aerosil - Degussa and Romsil types) and TiO2. The structure and thermal decomposition of supported and unsupported HPAs were followed by different techniques (TGA-DTA, FTIR, XRD, low temperature nitrogen adsorption, scanning electron microscopy). All the supported HPAs were prepared by impregnation using the incipient wetness technique with a 1:1 mixture of water-ethanol. Samples were prepared with different concentrations to examine the effect of loading on the thermal behavior of the supported acid catalysts. The thermal stability was evaluated with reference to the bulk solid acids and mechanical mixtures. After deposition on silica types supports, an important decrease in thermal stability was observed on the Romsil types and a small decrease on the Aerosil type. The stability of the heteropolyacids supported on titania increased due to an anion-support interaction, as the thermal decomposition proceeded in two steps. The structure of the HPAs was not totally destroyed at 450 ?C as some IR bands were still preserved. A relatively uniform distribution of HPAs on the support surface was observed for all compositions of the active phase. No separate crystallites of solid phase HPAs were found in the SEM images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.