Manganese is an essential element for plants, intervening in several metabolic processes, mainly in photosynthesis and as an enzyme antioxidant-cofactor. Nevertheless, an excess of this micronutrient is toxic for plants. Mn phytotoxicity is manifested in a reduction of biomass and photosynthesis, and biochemical disorders such as oxidative stress. Some studies on Mn toxicity and Mn translocation from soil to plant cells in Mn 2+ form have demonstrated their importance under low pH and redox potential conditions in the soil. When Mn is inside the cells, mechanisms that can tolerate this toxicity are also observed, being important the compartmentalization of this metal in different organelles of shoot and leaf plant cells. A key role of antioxidative systems in plants in relation to high Mn amounts has also been reported as a defense mechanism. The purpose of this review is to show the role of Mn as an essential micronutrient and as a toxic element to higher plants as well as to their transport and tolerance mechanisms. The forms and dynamics of this element in soils and the importance of the acidity for this dynamic and availability for plants are also given.
Most of the ice and snow-free land in the Antarctic summer is found along the Antarctic Peninsula and adjacent islands and coastal areas of the continent. This is the area where most of the Antarctic vegetation is found. Mean air temperature tends to be above zero during the summer in parts of the Maritime Antarctic. The most commonly found photosynthetic organisms in the Maritime Antarctic and continental edge are lichens (around 380 species) and bryophytes (130 species). Only two vascular plants, Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl., have been able to colonize some of the coastal areas. This low species diversity, compared with the Arctic, may be due to permanent low temperature and isolation from continental sources of propagules. The existence of these plants in such a permanent harsh environment makes them of particular interest for the study of adaptations to cold environments and mechanisms of cold resistance in plants. Among these adaptations are high freezing resistance, high resistance to light stress and high photosynthetic capacity at low temperature. In this paper, the ecophysiology of the two vascular plants is reviewed, including habitat characteristics, photosynthetic properties, cold resistance, and biochemical adaptations to cold.
Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) are the only two vascular plants that have colonized the Maritime Antarctic. The primary purpose of the present work was to determine cold resistance mechanisms in these two Antarctic plants. This was achieved by comparing thermal properties of leaves and the lethal freezing temperature to 50% of the tissue (LT50). The grass D. antarctica was able to tolerate freezing to a lower temperature than C. quitensis. The main freezing resistance mechanism for C. quitensis is supercooling. Thus, the grass is mainly a freezing‐tolerant species, while C. quitensis avoids freezing. D. antarctica cold acclimated; thus, reducing its LT50. C. quitensis showed little cold‐acclimation capacity. Because day length is highly variable in the Antarctic, the effect of day length on freezing tolerance, growth, various soluble carbohydrates, starch, and proline contents in leaves of D. antarctica growing in the laboratory under cold‐acclimation conditions was studied. During the cold‐acclimation treatment, the LT50 was lowered more effectively under long day (21/3 h light/dark) and medium day (16/8) light periods than under a short day period (8/16). The longer the day length treatment, the faster the growth rate for both acclimated and non‐acclimated plants. Similarly, the longer the day treatment during cold acclimation, the higher the sucrose content (up to 7‐fold with respect to non‐acclimated control values). Oligo and polyfructans accumulated significantly during cold acclimation only with the medium day length treatment. Oligofructans accounted for more than 80% of total fructans. The degrees of polymerization were mostly between 3 and 10. C. quitensis under cold acclimation accumulated a similar amount of sucrose than D. antarctica, but no fructans were detected. The suggestion that survival of Antarctic plants in the Antarctic could be at least partially explained by accumulation of these substances is discussed.
Dehydrins are a family of proteins associated with cell dehydration. Drought, salinity, and high and low temperature may cause water loss from cells. Cold‐induced dehydrins have been reported in several species. P‐80 is a cold‐induced 80 kDa dehydrin in barley. This protein has the same apparent molecular mass as Dhn5, previously described for barley cv Himalaya. P‐80 was localized in the vicinity of vascular cylinders and in the epidermis of leaves and stems. Both tissues have been reported to be sites of early ice nucleation during controlled freezing. The present authors have proposed that this protein cryoprotects macromolecules and frost‐sensitive structures. In the present study, P‐80 and Dhn5 were purified with the purposes of demonstrating their cryoprotective activity in vitro, and comparing both proteins. More than 95% purity was obtained combining heat treatment, cationic exchange chromatography, preparative denaturant electrophoresis and band electroelution. Western blots showed that P‐80 was the major cold‐induced dehydrin in the cultivars examined in the present study. There was a major band of mRNA that showed expression kinetics consistent with P‐80 accumulation. The RT‐PCR picked one major band when using Dhn5‐specific primers in four cold‐acclimated barley cultivars. Both proteins have a similar amino acid composition, with differences in Arg, Asn + Asp, Glu + Gln, His, and Lys. The analysis of proteolytic fragments of Dhn5 and P‐80 by reverse phase chromatography showed a similar pattern. Furthermore, both proteins were able to cryoprotect lactate dehydrogenase (LDH, EC 1.1.1.27) against freeze/thaw inactivation, showing a similar shape dependence on concentration and almost the same protein dosage that renders 50% of cryoprotection (PD50). Thus, P‐80 and Dhn‐5 share more similarities than expected for two different proteins. Their identities, though, remain to be firmly established. Further research is necessary to establish if the observed in vitro cryoprotective activity of these dehydrins is important for cryoprotection in vivo. The association of cryoprotective activity with K repeats of dehydrins is discussed.
We evaluated the genotype and maturity effects on antioxidant activity and phenolic compounds of whole, skin and pulp fruits from three highbush blueberry cultivars (cv. Brigitta, cv. Bluegold and cv. Legacy) grown in southern Chile. Total antioxidant activity (TAA) in ripe fruits varied among the cultivars in the order Legacy > Brigitta > Bluegold. We found that TAA in unripe green and fully ripe fruits was high and similar between them, whereas the lowest levels were found in intermediate ripe fruits. The same trend was observed for fruit total phenolic content. This could be attributed to the higher concentrations of phenolic acids (mainly chlorogenic acid) and flavonols (mainly rutin) at immature fruit stages; whereas the high TAA in mature fruits could be explained by the elevated amounts of anthocyanin. All antioxidant compounds were mostly located in the skin. High amounts of delphinidin aglycone were found. HPLC-DAD/MS revealed that the main contents of skin anthocyanins are petunidin-3-glucoside and petunidin-3-arabinnoside followed by malvidin-3-galactoside. It is noticeable that highbush blueberry fruits grown in southern Chile have exceptionally higher antioxidant activity and anthocyanins contents compared with those cultivated in the northern hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.