The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Until the 1980s theories of social insect evolution drew strongly on halictine and allodapine bees. However, that early work suffered from a lack of sound phylogenetic inference and detailed information on social behavior in many critical taxa. Recent studies have changed our understanding of these bee groups in profound ways. It has become apparent that forms of social organization, caste determination, and sex allocation are more labile and complex than previously thought, although the terminologies for describing them are still inadequate. Furthermore, the unexpected complexity means that many key parameters in kin selection and reproductive skew models remain unquantified, and addressing this lack of information will be formidable. At the same time, phylogenetic questions have become more tractable, and DNA sequence-based studies have resolved questions that earlier studies could not resolve, radically changing our understanding of the number of origins and losses of sociality in these bees.
Survival rates of adult and juvenile Lesser Snow Geese (Anser caerulescens caerulescens) were estimated based on hunter recoveries from over 80 000 geese banded between 1970 and 1988 at La Perouse Bay, near Churchill, Manitoba. Adult survival rate increased significantly from °78% in 1970 to nearly 88% in 1987. Similar increases in adult survival, although not significant, occurred between 1969 and 1979 at a second colony of Snow Geese at Cape Henrietta Maria in Northern Ontario. These increases coincided with a decline in the proportion of Snow Geese being shot each year on the flyways, suggesting that reduced mortality from hunting may be responsible for the increased survival. In contrast, survival rates of fledglings over their first year decreased significantly from a mean of 60% in 1970 to °30% in 1987, despite the reduction in hunting pressure. The indicates that young geese have been suffering increasing rates of nonhunting mortality, most likely prior to leaving the breeding grounds or on their first autumn migration. Their increased mortality appears to be related to slower growth rates and reduced body size induced by deteriorating feeding conditions on the breeding grounds. This study shows that different processes can influence mortality rates at different stages of the life cycle. The long—term changes indicate that mean values of age—specific survival rates are not adequate to describe the dynamics of this population.
To evaluate sociality in small carpenter bees (Ceratina Latreille), we studied the life history and nesting biology of a common eastern North American species, Ceratina (Zadontomerus) calcarata Robertson. Pan-trap and nest collections throughout the active season (May to September 2006) were used to assess seasonal phenology and nesting biology of C. calcarata in southern Ontario. Adults overwintered in their natal nests. Males emerged in early May and occupied preexisting hollows in twigs and stems. Females emerged from hibernacula 2 weeks later, founding new nests. Nest founding and provisioning occurred throughout the spring; females remained with developing brood through the summer. Complete nests contained, on average, 6.9 offspring, with egg-to-adult development averaging 46 days. Ceratina calcarata is subsocial rather than solitary: mothers are long-lived and nestloyal, and care for offspring from egg to adulthood. Subsociality is found in all behaviourally classified small carpenter bees, while some species cross the boundary into social life, making Ceratina an important genus for the study of the transition between solitary and social life.Résumé-Afin d'évaluer la socialité des petites fourmis charpentières (Ceratina Latreille), nous avons étudié le cycle biologique et la biologie de la nidification chez une espèce commune de l'est de l'Amérique du Nord, C. (Zadontomerus) calcarata Robertson. Nous avons utilisé des pièges à cuvette et des récoltes de nids durant toute la saison active (mai à septembre 2006) pour déterminer la phénologie saisonnière et la biologie de la nidification chez C. calcarata dans le sud de l'Ontario. Les adultes passent l'hiver dans le nid où ils sont nés. Les mâ les émergent au début de mai et occupent des cavités préexistantes dans les ramilles et les tiges. Les femelles émergent des hibernacles deux semaines plus tard et fondent de nouveaux nids. La fondation et l'approvisionnement des nids se poursuivent pendant tout le printemps et les femelles demeurent avec le couvain en développement pendant tout l'été. Les nids complets contiennent en moyenne 6,9 rejetons et le développement de l'oeuf à l'adulte prend en moyenne 46 jours. Ceratina calcarata est subsocial plutô t que solitaire; les femelles vivent longtemps, sont fidèles au nid et s'occupent des petits, de l'oeuf à l'adulte. On retrouve de la subsocialité chez toutes les fourmis classées comme petites charpentières d'après leur comportement, bien que certaines espèces passent la frontière vers la vie sociale, ce qui fait de Ceratina un taxon important pour l'étude des transitions de la vie solitaire à la vie sociale.[Traduit par la Rédaction]
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.