In the present study, we showed that Gd was transferred to pups and was retained in their brain during postnatal development. Gadolinium retention may lead to impaired brain development. These findings indicate that the use of GBCAs in pregnant women should be avoided because it may have adverse effects on the fetus, particularly on brain development.
Mild perinatal hypothyroidism may result from inadequate iodine intake, insufficient treatment of congenital hypothyroidism, or exposure to endocrine-disrupting chemicals. Because thyroid hormones are critical for brain development, severe hypothyroidism that is untreated in infancy causes irreversible cretinism. Milder hypothyroidism may also affect cognitive development; however, the effects of mild and/or moderate hypothyroidism on brain development are not fully understood. In this study, we examined the behavior of adult male mice rendered mildly hypothyroid during the perinatal period using low-dose propylthiouracil (PTU). PTU was administered through drinking water (5 or 50 ppm) from gestational day 14 to postnatal day 21. Cognitive performance, studied by an object in-location test (OLT), was impaired in PTU-treated mice at postnatal week 8. These results suggest that, although the hypothyroidism was mild, it partially impaired cognitive function. We next measured the concentration of neurotransmitters (glutamate, γ-aminobutyric acid, and glycine) in the hippocampus using in vivo microdialysis during OLT. The concentrations of neurotransmitters, particularly glutamate and glycine, decreased in PTU-treated mice. The expression levels of N-methyl-d-aspartate receptor subunits, which are profound regulators of glutamate neurotransmission and memory function, also were decreased in PTU-treated mice. These data indicate that mild perinatal hypothyroidism causes cognitive disorders in adult offspring. Such disorders may be partially induced secondary to decreased concentrations of neurotransmitters and receptor expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.