For a simple connected graph G=(V,E), an ordered set W⊆V, is called a resolving set of G if for every pair of two distinct vertices u and v, there is an element w in W such that d(u,w)≠d(v,w). A metric basis of G is a resolving set of G with minimum cardinality. The metric dimension of G is the cardinality of a metric basis and it is denoted by β(G). In this article, we determine the metric dimension of power of finite paths and characterize all metric bases for the same.
Metric Dimension of a simple connected graph is the minimum number of vertices those are used to identify each vertex of the graph uniquely using distance code. In this paper, we determine metric dimension of ideal-intersection graph for the ring Z n , where n being a positive integer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.