The interfacial interaction of 2D
materials with the substrate
leads to striking surface faceting affecting its electronic properties.
Here, we quantitatively study the orientation-dependent facet topographies
observed on the catalyst under graphene using electron backscatter
diffraction and atomic force microscopy. The original flat catalyst
surface transforms into two facets: a low-energy low-index surface,
e.g. (111), and a vicinal (high-index) surface. The critical role
of graphene strain, besides anisotropic interfacial energy, in forming
the observed topographies is revealed by molecular simulations. These
insights are applicable to other 2D/3D heterostructures.
If it is the author's pre-published version, changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published version.
Industrial production of graphene by chemical vapor deposition (CVD) requires more than the ability to synthesize large domain, high quality graphene in a lab reactor. The integration of graphene in the fabrication process of electronic devices requires the cost-effective and environmentally-friendly production of graphene on dielectric substrates, but current approaches can only produce graphene on metal catalysts.Sustainable manufacturing of graphene should also conserve the catalyst and reaction gases, but today the metal catalysts are typically dissolved after synthesis. Progress toward these objectives is hindered by the hundreds of coupled synthesis parameters that can strongly affect CVD of low-dimensional materials, and poor communication in the published literature of the rich experimental data that exists in individual laboratories. We report here on a platform, "Graphene -Recipes for synthesis of high quality material" (Gr-ResQ: pronounced graphene rescue), that includes powerful new tools for data-driven graphene synthesis. At the core of Gr-ResQ is a crowd-sourced database of CVD synthesis recipes and associated experimental results. The database captures ∼300 parameters ranging from synthesis conditions like catalyst material and preparation steps, to ambient lab temperature and reactor details, as well as resulting Raman spectra and microscopy images. These parameters are carefully selected to unlock the potential of machine-learning models to advance synthesis. A suite of associated tools enable fast, automated and standardized processing of Raman spectra and scanning electron microscopy images. To facilitate community-based efforts, Gr-ResQ provides tools for cyber-physical collaborations among research groups, allowing experiments to be designed, executed, and analyzed by different teams. Gr-ResQ also allows publication and discovery of recipes via the Materials Data Facility (MDF), which assigns each recipe a unique identifier when published and collects parameters in a search index. We envision that this holistic approach to data-driven synthesis can accelerate CVD recipe discovery and production control, and open opportunities for advancing not only graphene, but also many other 1D and 2D materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.