Calf circumference was positively correlated with appendicular skeletal muscle mass and skeletal muscle index, and could be used as a surrogate marker of muscle mass for diagnosing sarcopenia. The suggested cut-off values of calf circumference for predicting low muscle mass are <34 cm in men and <33 cm in women.
In this study of Japanese men and women, we determine reference values for sarcopenia and test the hypothesis that sarcopenia is associated with risk factors for cardiovascular disease, independent of waist circumference. A total of 1,488 Japanese men and women aged 18-85 years participated in this study. Appendicular muscle mass (AMM) was measured by dual-energy X-ray absorptiometry. Reference values for classes 1 and 2 sarcopenia (skeletal muscle index: AMM/height2, kg m-2) in each sex were defined as values one and two standard deviations below the sex-specific means of reference values obtained in this study from young adults aged 18-40 years. The reference values for class 1 and class 2 sarcopenia were 7.77 and 6.87 kg m-2 in men and 6.12 and 5.46 kg m-2 in women. In subjects both with class 1 and class 2 sarcopenia, body mass index and % body fat were significantly lower than in normal subjects. Despite whole-blood glycohaemoglobin A1c in men with class 1 sarcopenia was significantly higher than in normal subjects, and brachial-ankle pulse wave velocity in women both with class 1 and class 2 sarcopenia were significantly higher than in normal subjects, using one-way ANCOVA with adjustment for the covariate of waist circumference. Although sarcopenia is associated with thin body mass, it is associated with more glycation of serum proteins in men and with greater arterial stiffness in women, independent of waist circumference.
Regular exercise reduces the risks for cardiovascular diseases. Although the gut microbiota has been associated with fitness level and cardiometabolic risk factors, the effects of exercise‐induced gut microbiota changes in elderly individuals are unclear. This study evaluated whether endurance exercise modulates the gut microbiota in elderly subjects, and whether these changes are associated with host cardiometabolic phenotypes. In a randomized crossover trial, 33 elderly Japanese men participated in a 5‐week endurance exercise program. 16S rRNA gene‐based metagenomic analyses revealed that the effect of endurance exercise on gut microbiota diversity was not greater than interindividual differences, whereas changes in α‐diversity indices during intervention were negatively correlated with changes in systolic and diastolic blood pressure, especially during exercise. Microbial composition analyses showed that the relative abundance of Clostridium difficile significantly decreased, whereas that of Oscillospira significantly increased during exercise as compared to the control period. The changes in these taxa were correlated with the changes in several cardiometabolic risk factors. The findings indicate that short‐term endurance exercise has little effect on gut microbiota in elderly individuals, and that the changes in gut microbiota were associated with cardiometabolic risk factors, such as systolic and diastolic blood pressure, providing preliminary insight into the associations between the gut microbiota and cardiometabolic phenotypes.
Cellular damage caused by free radical reactions may play a role in the aging process. A bout of exercise can increase free radical concentration with damage to mitochondria in muscle (Davies et al., 1982). This study was undertaken to determine if muscle adapts to exercise training with an enhancement of enzymatic defenses against free radical damage. A program of running that induced two-fold increases in mitochondrial enzymes in leg muscles of rats resulted in no increase in catalase or cytoplasmic superoxide dismutase (SOD) activities. Mitochondrial SOD activity was increased 37% in fast-twitch red and slow-twitch red types of muscle and 14% in white muscle. Thus, despite an increase in mitochondrial SOD, the ratio of SOD to mitochondrial citrate cycle and respiratory chain enzymes was decreased. It seems unlikely that increased capacity for enzymatic scavenging of superoxide radical is a major protective adaptation against free radical damage in exercise-trained muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.