Food contains various compounds, and there are many methods available to analyze each of these components. However, the large amounts of low-molecular-weight metabolites in food, such as amino acids, organic acids, vitamins, lipids, and toxins, make it difficult to analyze the spatial distribution of these molecules. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is a two-dimensional ionization technology that allows the detection of small metabolites in tissue sections without requiring purification, extraction, separation, or labeling. The application of MALDI-MS imaging in food analysis improves the visualization of these compounds to identify not only the nutritional content but also the geographical origin of the food. In this review, we provide an overview of some recent applications of MALDI-MS imaging, demonstrating the advantages and prospects of this technology compared to conventional approaches. Further development and enhancement of MALDI-MS imaging is expected to offer great benefits to consumers, researchers, and food producers with respect to breeding improvement, traceability, the development of value-added foods, and improved safety assessments.
Rationale:In skeletal muscles, there are four myofiber types, Types I, IIa, IIx, and IIb, which show different contraction characteristics and have different metabolic statuses. To understand muscle function, it is necessary to analyze myofiber-specific metabolic changes. However, these fibers are heterogeneous and are hard to discriminate by conventional analyses using tissue extracts. In this study, we found myofiber-specific molecules and molecular markers of other cells such as smooth muscle cells, fat cells, and motor neurons, and visualized them within muscle sections. Methods:We used three different muscle tissues, namely extensor digitorum longus, soleus, and gastrocnemius tissues, from ICR mice. After the muscles had been harvested, cross-sections were prepared using a cryostat and analyzed using matrixassisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), and conventional immunofluorescence imaging.Results: By comparing the MALDI MSI results with the immunofluorescence imaging results, we were able to identify each fiber and cell-specific ion. It was especially important that we could find Type IIa and IIb specific ions, because these were difficult to distinguish. Conclusions:Through MSI analyses, we performed a comprehensive survey to identify cell-and myofiber-specific molecular markers. In conclusion, we assigned muscle fiber Type I, IIa, and IIb-specific molecular ions at m/z 856.6, 872.6, and 683.8, respectively. These molecular markers might be useful for verifying changes that occur due to exercise and/or disease.
Thyroid hormones are not only responsible for thermogenesis and energy metabolism in animals, but also have an important role in cell differentiation and development. Amphibian metamorphosis provides an excellent model for studying the remodeling of the body. This metamorphic organ remodeling is induced by thyroid hormones, and a larval body is thus converted into an adult one. The matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) imaging technology is expected to be a suitable tool for investigating small bioreactive molecules. The present study describes the distribution of the thyroid hormones, i.e., triiodothyronine (T3) and thyroxine (T4) and their inactive form reverse T3 (rT3) in Xenopus tropicalis tadpoles using two different types of imaging techniques, MS/MS and Fourier transform (FT)-MS imaging. As a result of MS/MS imaging, we demonstrated that T3 was mainly distributed in the gills. T4 was faintly localized in the eyes, inner gills, and intestine during metamorphosis. The intensity of T3 in the gills and the intensity of T4 in the body fluids were increased during metamorphosis. Moreover, the localization of the inactive form rT3 was demonstrated to be separate from T3, namely in the intestine and muscles. In addition, FT-MS imaging could utilize simultaneous imaging including thyroid hormone. This is the first report to demonstrate the molecular distribution of thyroid hormones themselves and to discriminate T3, T4, and rT3 in animal tissues.
Giant clams have evolved to maximize sunlight utilization by their photosymbiotic partners, while affording them protection from harmful ultraviolet (UV) light. The presence of UV absorbing substances in the mantle is thought to be critical for light protection; however, the exact localization of such compounds remains unknown. Here, we applied a combination of UV liquid chromatography (LC), LC-mass spectrometry (MS), MS imaging, and UV micrography to localize UV absorbing substances in the giant clam Tridacna crocea. LC-MS analysis revealed that the animal contained three classes of mycosporines: progenitor, primary, and secondary mycosporines. MS imaging revealed that primary and secondary mycosporines were localized in the outermost layer of the mantle; whereas progenitor mycosporines were distributed throughout the mantle tissue. These findings were consistent with the results of UV micrography, which revealed that the surface layer of the mantle absorbed UV light at 320 ± 10 nm. This is the first report indicating that progenitor and primary mycosporines are metabolized to secondary mycosporines by the giant clam and that they are differentially localized in the surface layer of the mantle to protect the animal from UV light.
Alaska pollack protein (APP) was previously shown to reduce serum triacylglycerol and the atherogenic index and significantly increase gastrocnemius muscle mass in rats. To determine which myofibers are involved in this observed hypertrophy, we stained the gastrocnemius muscle with fast and slow fiber-specific antibodies and measured the muscle fiber diameter. We observed muscle hypertrophy in both the fast and slow fibers of APP-fed rats. Although muscle hypertrophy leads to drastic lipid changes, the amount of lipids did not differ significantly between casein-fed and APP-fed rats. To determine the lipid changes at the molecular species level and their localization, we performed matrix-assisted laser desorption/ ionization mass spectrometry imaging to visualize lipids in the gastrocnemius muscles. We determined that lipid molecules were significantly changed due to APP feeding. Thus, APP feeding changes muscle lipid metabolism, and these metabolic changes might be related to hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.