While a large number of algorithms for optimizing quantum dynamics for different objectives have been developed, a common limitation is the reliance on good initial guesses, being either random or based on heuristics and intuitions. Here we implement a tabula rasa deep quantum exploration version of the Deepmind AlphaZero algorithm for systematically averting this limitation. AlphaZero employs a deep neural network in conjunction with deep lookahead in a guided tree search, which allows for predictive hidden variable approximation of the quantum parameter landscape. To emphasize transferability, we apply and benchmark the algorithm on three classes of control problems using only a single common set of algorithmic hyperparameters. AlphaZero achieves substantial improvements in both the quality and quantity of good solution clusters compared to earlier methods. It is able to spontaneously learn unexpected hidden structure and global symmetry in the solutions, going beyond even human heuristics. arXiv:1907.05672v1 [quant-ph]
We introduce an efficient iterative method to prepare a target state in Hilbert spaces with high dimensionality using a combination of unitary evolution, measurements, and quantum Zeno dynamics. The latter confines the evolution within Zeno subspaces of decreasing size. This gives an exponential speed up relative to the case of states evolving in the full Hilbert space between projective measurements. We demonstrate our approach on the control problem of rapidly transferring a superfluid into the Mott insulator in the Bose-Hubbard model. We discuss the general applicability of the method by preparing arbitrary superpositions with random Hamiltonians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.