Parkinson’s disease (PD) affects almost 1% of the population worldwide over the age of 50 years. Exposure to environmental toxins like paraquat and rotenone is a risk factor for sporadic PD which constitutes 95% of total cases. Herbicide rotenone has been shown to cause Parkinsonian symptoms in multiple animal models. Drosophila is an excellent model organism for studying neurodegenerative diseases (NDD) including PD. The aging process is characterized by differential expression of genes during different life stages. Hence it is necessary to develop life-stage-matched animal models for late-onset human disease(s) such as PD. Such animal models are critical for understanding the pathophysiology of age-related disease progression and important to understand if a genotropic drug/nutraceutical can be effective during late stages. With this idea, we developed an adult life stage-specific (health and transition phase, during which late-onset NDDs such as PD sets in) rotenone-mediated Drosophila model of idiopathic PD. Drosophila is susceptible to rotenone in dose-time dependent manner. Rotenone-mediated fly model of sporadic PD exhibits mobility defects (independent of mortality), inhibited mitochondrial complex I activity, dopaminergic (DAergic) neuronal dysfunction (no loss of DAergic neuronal number; however, reduction in rate-limiting enzyme tyrosine hydroxylase (TH) synthesis), and alteration in levels of dopamine (DA) and its metabolites; 3,4-Dihydroxyphenylacetic acid (DOPAC) and Homovanilic acid (HVA) in brain-specific fashion. These PD-linked behaviors and brain-specific phenotypes denote the robustness of the present fly model of PD. This novel model will be of great help to decipher life stage-specific genetic targets of small molecule mediated DAergic neuroprotection; understanding of which is critical for formulating therapeutic strategies for PD.
Parkinson's disease (PD) is a medical condition that has been known since ancient times. It is the second most common neurodegenerative disorder affecting approximately 1% of the population over 50 years. It is characterized by both motor and non-motor symptoms. Most of PD cases are sporadic while 5-10% cases are familial. Environment factors such as exposure to pesticides, herbicides and other heavy metals are expected to be the main cause of sporadic form of the disease. Mutation of the susceptible genes such as SNCA, PINK1, PARKIN, DJ1, and others are considered to be the main cause of the familial form of disease. Drosophila offers many advantages for studying human neurodegenerative diseases and their underlying molecular and cellular pathology. Shorter life span; large number of progeny; conserved molecular mechanism(s) among fly, mice and human; availability of many techniques, and tools to manipulate gene expression makes drosophila a potential model system to understand the pathology associated with PD and to unravel underlying molecular mechanism(s) responsible for dopaminergic neurodegeneration in PD-understanding of which will be of potential assistance to develop therapeutic strategies to PD. In the present review, we made an effort to discuss the contribution of fly model to understand pathophysiology of PD, in understanding the biological functions of genes implicated in PD; to understand the gene-environment interaction in PD; and validation of clues that are generated through genome-wide association studies (GWAS) in human through fly; further to screen and develop potential therapeutic molecules for PD. In nutshell, fly has been a great model system which has immensely contributed to the biomedical research relating to understand and addressing the pathology of human neurological diseases in general and PD in particular.
Parkinson s disease PD is the second most common neurodegenerative disorder affecting approximately % of the population over age . PD is widely accepted as a multifactorial disease with both genetic and environmental contributions. Despite extensive research conducted in the area the precise etiological factors responsible remain elusive. In about % Parkinsonism is considered to have a sporadic component. There are currently no established curative, preventative, or diseasemodifying interventions, stemming from a poor understanding of the molecular mechanisms of pathogenesis. Here lies the importance of animal models. Pharmacological insults cause Parkinsonian like phenotypes in Drosophila, thereby modelling sporadic PD. The pesticides paraquat and rotenone induced oxidative damage causing cluster specific D" neuron loss together with motor deficits. Studies in fly PD model have deciphered that signaling pathways such as phosphatidylinositolkinase PI K/"kt and target of rapamycin TOR , c-Jun N-terminal kinase JNK have been defective. Further, these studies have demonstrated that fruit fly can be a potential model to screen chemical compounds for their neuroprotective efficacy. This chapter overviews current knowledge on the pathophysiology of sporadic PD employing Drosophila model and discusses the future perspectives. Further we emphasize the importance of performing genome wide screens in fly model, which
Sexual dysfunction (SD) is one of the most common non-motor symptoms of Parkinson’s disease (PD) and remains the most neglected, under-reported, and under-recognized aspect of PD. Studies have shown that Dopamine (DA) in the hypothalamus plays a role in regulating sexual behavior. But the detailed mechanism of SD in PD is not known. Drosophila melanogaster shares several genes and signaling pathways with humans which makes it an ideal model for the study of a neurodegenerative disorder such as PD. Courtship behavior of Drosophila is one such behavior that is closely related to human sexual behavior and so plays an important role in understanding sexual behavior in diseased conditions as well. In the present study, a sporadic SD model of PD using Drosophila was developed and SD phenotype was observed based on abnormalities in courtship behavior markers. The Drosophila SD model was developed in such a way that at the window of neurotoxin paraquat (PQ) treatment [PQ is considered a crucial risk factor for PD due to its structural similarity with 1-methyl-4-phenyl pyridinium (MPP+), the active form of PD-inducing agent, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], it does not exhibit mobility defects but shows SD. The whole brain tyrosine hydroxylase immunostaining showed no observable dopaminergic (DAergic) degeneration (number of DA neurons and fluorescence intensity of fluorescently labeled secondary antibodies that target anti-TH primary antibody) of the SD model. Similarly, there was no significant depletion of brain DA and its metabolite levels (HVA and DOPAC) as determined using HPLC-ECD (High-Performance Liquid Chromatography using Electrochemical Detector). The present study illustrates that the traits associated with courtship and sexual activity provide sensitive markers at the earlier stage of PD onset. This PQ-induced SD fly model throws an opportunity to decipher the molecular basis of SD under PD conditions and to screen nutraceuticals/potential therapeutic molecules to rescue SD phenotype and further to DAergic neuroprotection.
Death of dopaminergic (DAergic) neurons in the substantia nigra pars compacta of the human brain is the characteristic pathological feature of Parkinson’s disease (PD). On exposure to neurotoxicants, Drosophila too exhibits mobility defects and diminished levels of brain dopamine. In the fly model of sporadic PD, our laboratory has demonstrated that there is no loss of DAergic neuronal number, however, a significant reduction in fluorescence intensity (FI) of secondary antibodies that target the primary antibody-anti-tyrosine hydroxylase (TH). Here, we present a sensitive, economical, and repeatable assay to characterize neurodegeneration based on the quantification of FI of the secondary antibody. As the intensity of fluorescence correlates with the amount of TH synthesis, its reduction under PD conditions denotes the depletion in the TH synthesis, suggesting DAergic neuronal dysfunction. Reduction in TH protein synthesis is further confirmed through Bio-Rad Stain-Free Western Blotting. Quantification of brain DA and its metabolites (DOPAC and HVA) using HPLC-ECD further demonstrated the depleted DA level and altered DA metabolism as evident from enhanced DA turnover rate. Together all these PD marker studies suggest that FI quantification is a refined and sensitive method to understand the early stages of DAergic neurodegeneration. FI quantification is performed using ZEN 2012 SP2, a licensed software from Carl Zeiss, Germany. This method will be of good use to biologists, as it with few modifications, can also be implemented to characterize the extent of degeneration of different cell types. Unlike the expensive and cumbersome confocal microscopy, the present method using fluorescence microscopy will be a feasible option for fund-constrained neurobiology laboratories in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.