This paper presents a new multi objective optimization algorithm with the aim of complete coverage, faster global convergence and higher solution quality. In this technique, the high-speed characteristic of particle swarm optimization (PSO) is combined with non-dominated differential evolutionary (NSDE) and an efficient multi objective optimization algorithm is created. This method posses high convergence characteristic in quite less execution times. Generating fewer populations to find the Pareto front also makes the proposed algorithm use less memory. For the purpose of performance evaluation, the algorithm is verified with four benchmarking functions on its global optimal search ability and compared with two recognized algorithm to assess its diversity. The capability of the suggested algorithm in solving practical engineering problems such as power system protection is also studied and the results are discussed in detail.
Among the most noticeable root causes of improper performance in power transformers, internal short circuit faults can be noted and if not quickly be identified and addressed in the accepted time interval, irrecoverable damages such as interruption or even collapse of the network connected to the power transformer would happen. In this contribution, three-phase transformer behaviors under magnetizing inrush, internal short circuit condition and their current values determination have been surveyed using electromagnetic coupling model approach and structural finite element method. Utilizing the definition of transformer in the form of multi-coil and their electromagnetic and electric couple, a three dimensional geometric model of transformer is developed which includes nonlinear characteristics of the transformer, different states of normal and under internal short circuit occurrence and the moment of magnetizing inrush creation are investigated. The comparison between obtained results of presented model simulation with the consequences of practical studies on a typical three phase transformer reveals that the proposed model has a reliable accuracy in detection and modelling the transformer behavior in normal conditions, magnetizing inrush and different types of internal faults. The proposed approach represents an accurate model of a three-phase transformer for protection aims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.