Feature selection problem is one of the most significant issues in data classification. The purpose of feature selection is selection of the least number of features in order to increase accuracy and decrease the cost of data classification. In recent years, due to appearance of high-dimensional datasets with low number of samples, classification models have encountered over-fitting problem. Therefore, the need for feature selection methods that are used to remove the extensions and irrelevant features is felt. Recently, although, various methods have been proposed for selecting the optimal subset of features with high precision, these methods have encountered some problems such as instability, high convergence time, selection of a semi-optimal solution as the final result. In other words, they have not been able to fully extract the effective features. In this paper, a hybrid method based on the IWSSr method and Shuffled Frog Leaping Algorithm (SFLA) is proposed to select effective features in a large-scale gene dataset. The proposed algorithm is implemented in two phases: filtering and wrapping. In the filter phase, the Relief method is used for weighting features. Then, in the wrapping phase, by using the SFLA and the IWSSr algorithms, the search for effective features in a feature-rich area is performed. The proposed method is evaluated by using some standard gene expression datasets. The experimental results approve that the proposed approach in comparison to similar methods, has been achieved a more compact set of features along with high accuracy. The source code and testing datasets are available at https://github.com/jimy2020/SFLA_IWSSr-Feature-Selection.
Sequence data are deposited in the form of unphased genotypes and it is not possible to directly identify the location of a particular allele on a specific parental chromosome or haplotype. This study employed nonlinear time series modeling approaches to analyze the haplotype sequences obtained from the NGS sequencing method. To evaluate the chaotic behavior of haplotypes, we analyzed their whole sequences, as well as several subsequences from distinct haplotypes, in terms of the SNP distribution on their chromosomes. This analysis utilized chaos game representation (CGR) followed by the application of two different scaling methods. It was found that chaotic behavior clearly exists in most haplotype subsequences. For testing the applicability of the proposed model, the present research determined the alleles in gap positions and positions with low coverage by using chromosome subsequences in which 10% of each subsequence’s alleles are replaced by gaps. After conversion of the subsequences’ CGR into the coordinate series, a Local Projection (LP) method predicted the measure of ambiguous positions in the coordinate series. It was discovered that the average reconstruction rate for all input data is more than 97%, demonstrating that applying this knowledge can effectively improve the reconstruction rate of given haplotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.