Forest inventories play an important role in enabling informed decisions to be made for the management and conservation of forest resources; however, the process of collecting inventory information is laborious. Despite advancements in mapping technologies allowing forests to be digitized in finer granularity than ever before, it is still common for forest measurements to be collected using simple tools such as calipers, measuring tapes, and hypsometers. Dense understory vegetation and complex forest structures can present substantial challenges to point cloud processing tools, often leading to erroneous measurements, and making them of less utility in complex forests. To address this challenge, this research demonstrates an effective deep learning approach for semantically segmenting high-resolution forest point clouds from multiple different sensing systems in diverse forest conditions. Seven diverse point cloud datasets were manually segmented to train and evaluate this model, resulting in per-class segmentation accuracies of Terrain: 95.92%, Vegetation: 96.02%, Coarse Woody Debris: 54.98%, and Stem: 96.09%. By exploiting the segmented point cloud, we also present a method of extracting a Digital Terrain Model (DTM) from such segmented point clouds. This approach was applied to a set of six point clouds that were made publicly available as part of a benchmarking study to evaluate the DTM performance. The mean DTM error was 0.04 m relative to the reference with 99.9% completeness. These approaches serve as useful steps toward a fully automated and reliable measurement extraction tool, agnostic to the sensing technology used or the complexity of the forest, provided that the point cloud has sufficient coverage and accuracy. Ongoing work will see these models incorporated into a fully automated forest measurement tool for the extraction of structural metrics for applications in forestry, conservation, and research.
Forest mensuration remains critical in managing our forests sustainably, however, capturing such measurements remains costly, time-consuming and provides minimal amounts of information such as diameter at breast height (DBH), location, and height. Plot scale remote sensing techniques show great promise in extracting detailed forest measurements rapidly and cheaply, however, they have been held back from large-scale implementation due to the complex and time-consuming workflows required to utilize them. This work is focused on describing and evaluating an approach to create a robust, sensor-agnostic and fully automated forest point cloud measurement tool called the Forest Structural Complexity Tool (FSCT). The performance of FSCT is evaluated using 49 forest plots of terrestrial laser scanned (TLS) point clouds and 7022 destructively sampled manual diameter measurements of the stems. FSCT was able to match 5141 of the reference diameter measurements fully automatically with mean, median and root mean squared errors (RMSE) of 0.032 m, 0.02 m, and 0.103 m respectively. A video demonstration is also provided to qualitatively demonstrate the diversity of point cloud datasets that the tool is capable of measuring. FSCT is provided as open source, with the goal of enabling plot scale remote sensing techniques to replace most structural forest mensuration in research and industry. Future work on this project will seek to make incremental improvements to this methodology to further improve the reliability and accuracy of this tool in most high-resolution forest point clouds.
Internationally forest biomass is considered to be a valuable renewable energy feedstock. However, utilization of forest harvesting residues is challenging because they are highly varied, generally of low quality and usually widely distributed across timber harvesting sites. Factors related to the collection, processing and transport impose constraints on the economic viability of residue utilization operations and impact their supply from dispersed feedstock locations. To optimize decision-making about suitable locations for biomass energy plants intending to use forest residues, it is essential to factor in these supply chain considerations. This study conducted in Tasmania, Australia presents an investigation into the integration of Multi-criteria analysis (MCA) and Geographical Information systems (GIS) to identify optimal locations for prospective biomass power plants. The amount of forest harvesting biomass residues was estimated based on a non-industrial private native resource model in Tasmania (NIPNF). The integration of MCA and a GIS model, including a supply chain cost analysis, allowed the identification and analysis of optimal candidate locations that balanced economic, environmental, and social criteria within the biomass supply. The study results confirm that resource availability, land use and supply chain cost data can be integrated and mapped using GIS to facilitate the determination of different sustainable criteria weightings, and to ultimately generate optimal candidate locations for biomass energy plants. It is anticipated that this paper will make a contribution to current scientific knowledge by presenting innovative approaches for the sustainable utilization of forest harvest residues as a resource for the generation of bioenergy in Tasmania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.