Limited charging infrastructure for electric vehicles (EVs) is one of the main barriers to adoption of these vehicles. In conjunction with limited battery range, the lack of charging infrastructure leads to range-anxiety, which may discourage many potential users. This problem is especially important for long-distance or intercity trips. Monthly traffic patterns and battery performance variations are two main contributing factors in defining the infrastructure needs of EV users, particularly in states with adverse weather conditions. Knowing this, the current study focuses on Michigan and its future needs to support the intercity trips of EVs across the state in two target years of 2020 and 2030, considering monthly traffic demand and battery performance variations. This study incorporates a recently developed modeling framework to suggest the optimal locations of fast EV chargers to be implemented in Michigan. Considering demand and battery performance variations is the major contribution of the current study to the proposed modeling framework by the same authors in the literature. Furthermore, many stakeholders in Michigan are engaged to estimate the input parameters. Therefore, the research study can be used by authorities as an applied model for optimal allocation of resources to place EV fast chargers. The results show that for charger placement, the reduced battery performance in cold weather is a more critical factor than the increased demand in warm seasons. To support foreseeable annual EV trips in Michigan in 2030, this study suggests 36 charging stations with 490 chargers and an investment cost of $23 million.
A network fundamental diagram (NFD) represents the relationship between network-wide average flow and average density. Network traffic state estimation to observe NFD when congestion is heterogeneously distributed, as a result of a time-varying and asymmetric demand matrix, is a challenging problem. Recent studies have formulated the NFD estimation problem using both fixed measurements and probe trajectories. They are often based on a given ground-truth NFD for a single day demand. Stochastic variations in network demand and supply may significantly affect the approximation of an NFD. This study proposes a modified framework to estimate network traffic states to observe NFD while capturing the stochasticity in transportation networks. A mixed integer problem with non-linear constraints is formulated to address stochasticity in the NFD estimation problem. To solve this Nondeterministic Polynomial-hard (NP-hard) problem, a solution algorithm based on the simulated annealing method is applied. The problem is formulated and the solution algorithm is implemented to find an optimal configuration of loop detectors and probe vehicles to estimate the NFD of the Chicago downtown network and capture its day-to-day variations, considering a given available budget. Ground-truth NFDs and estimated NFDs based on a subset of loop detectors and probe vehicles are calculated using a simulation-based dynamic traffic assignment model, which is the best surrogate available to replicate real-world conditions. The main contribution of this study is to capture stochasticity in the demand and supply sides to find a more robust subset of links and trajectories to be acquired for the NFD estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.