In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
The mimosoid legumes are a clade of ~40 genera in the Caesalpinioideae subfamily of the Fabaceae that grow in tropical and subtropical regions. Unlike the better studied Papilionoideae, there are few genomic resources within this legume group. The tree Prosopis cineraria is native to the Near East and Indian subcontinent, where it thrives in very hot desert environments. To develop a tool to better understand desert plant adaptation mechanisms, we sequenced the P. cineraria genome to near-chromosomal assembly, with a total sequence length of ~691 Mb. We predicted 77,579 gene models (76,554 CDS, 361 rRNAs and 664 tRNAs) from the assembled genome, among them 55,325 (~72%) protein-coding genes that were functionally annotated. This genome was found to consist of over 58% repeat sequences, primarily long terminal repeats (LTR-)-retrotransposons. We find an expansion of terpenoid metabolism genes in P. cineraria and its relative Prosopis alba, but not in other legumes. We also observed an amplification of NBS-LRR disease-resistance genes correlated with LTR-associated retrotransposition, and identified 410 retrogenes with an active burst of chimeric retrogene creation that approximately occurred at the same time of divergence of P. cineraria from a common lineage with P. alba~23 Mya. These retrogenes include many biotic defense responses and abiotic stress stimulus responses, as well as the early Nodulin 93 gene. Nodulin 93 gene amplification is consistent with an adaptive response of the species to the low nitrogen in arid desert soil. Consistent with these results, our differentially expressed genes show a tissue specific expression of isoprenoid pathways in shoots, but not in roots, as well as important genes involved in abiotic salt stress in both tissues. Overall, the genome sequence of P. cineraria enriches our understanding of the genomic mechanisms of its disease resistance and abiotic stress tolerance. Thus, it is a very important step in crop and legume improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.