Mammography is a method used for the detection of breast cancer. computer-aided diagnostic (CAD) systems help the radiologist in the detection and interpretation of mass in breast mammography. One of the important information of a mass is its contour and its form because it provides valuable information about the abnormality of a mass. The accuracy in the recognition of the shape of a mass is related to the accuracy of the detected mass contours. In this work we propose a new approach for detecting the boundaries of lesion in mammography images based on region growing algorithm without using the threshold, the proposed method requires an initial rectangle surrounding the lesion selected manually by the radiologist (Region Of Interest), where the region growing algorithm applies on lines segments that attach each pixel of this rectangle with the seed point, such as the ends (seeds) of each line segment grow in a direction towards one another. The proposed approach is evaluated on a set of data with 20 masses of the MIAS base whose contours are annotated manually by expert radiologists. The performance of the method is evaluated in terms of specificity, sensitivity, accuracy and overlap. All the findings and details of approach are presented in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.