Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.
Infectious bronchitis (IB) is one of the major economically important poultry diseases distributed worldwide. It is caused by infectious bronchitis virus (IBV) and affects both galliform and nongalliform birds. Its economic impact includes decreased egg production and poor egg quality in layers, stunted growth, poor carcass weight, and mortality in broiler chickens. Although primarily affecting the respiratory tract, IBV demonstrates a wide range of tissues tropism, including the renal and reproductive systems. Thus, disease outcome may be influenced by the organ or tissue involved as well as pathotypes or strain of the infecting virus. Knowledge on the epidemiology of the prevalent IBV strains in a particular region is therefore important to guide control and preventions. Meanwhile previous diagnostic methods such as serology and virus isolations are less sensitive and time consuming, respectively; current methods, such as reverse transcription polymerase chain reaction (RT-PCR), Restriction Fragment Length Polymorphism (RFLP), and sequencing, offer highly sensitive, rapid, and accurate diagnostic results, thus enabling the genotyping of new viral strains within the shortest possible time. This review discusses aspects on pathogenesis and diagnostic methods for IBV infection.
An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.
A study was carried out to investigate the effects of feeding liquid metabolite combinations produced by Lactobacillus plantarum strains on growth performance, diarrhoea incidence, faecal pH, microfloral counts, short-chain fatty acids (SCFA) and intestinal villus height and crypt depth of postweaning piglets. A total of 120 piglets (26 days old) were randomly assigned evenly into five treatment groups treated with same basal diet: (1) −ve control (free antibiotic); (2) + ve control (0.03% of chlortetracycline); (3) Com 1 (0.3% metabolite of TL1, RG11 and RI11 strains); (4) Com 2 (0.3% metabolite of TL1, RG14 and RS5 strains); (5) Com 3 (0.3% metabolite of RG11, RG14 and RI11 strains). After 5 weeks, the average daily feed intake was not significantly different (P > 0.05) among the treatments and feed conversion ratio was the highest (P < 0.05) in the −ve control group. In addition, diarrhoea incidence was reduced when piglets were fed with metabolite combinations. Faecal lactic acid bacteria (LAB) counts were significantly higher (P < 0.05) in metabolite treatment groups than in the groups without metabolites. However, the treatment of Com 2 metabolite resulted lower (P < 0.05) faecal pH and Enterobacteriaceae (ENT) than the −ve control group. In contrast, total faecal SCFA of Com 2 were significantly higher (P < 0.05) than the −ve control group. The villus height of duodenum was higher (P < 0.05) in the + ve control and Com 2 groups as compared to −ve control group. The results obtained in this study showed that feeding metabolite combinations could improve growth performance, and increase the population of gut LAB and faecal SCFA of postweaning piglets.
A Newcastle disease virus (NDV) isolate designated IBS002 was isolated from a commercial broiler farm in Malaysia. The virus was characterised as a virulent strain based on the multiple basic amino acid motif of the fusion (F) cleavage site 112RRRKGF117 and length of the C-terminus extension of the hemagglutinin-neuraminidase (HN) gene. Furthermore, IBS002 was classified as a velogenic NDV with mean death time (MDT) of 51.2 h and intracerebral pathogenicity index (ICPI) of 1.76. A genetic distance analysis based on the full-length F and HN genes showed that both velogenic viruses used in this study, genotype VII NDV isolate IBS002 and genotype VIII NDV isolate AF2240-I, had high genetic variations with genotype II LaSota vaccine. In this study, the protection efficacy of the recombinant genotype VII NDV inactivated vaccine was also evaluated when added to an existing commercial vaccination program against challenge with velogenic NDV IBS002 and NDV AF2240-I in commercial broilers. The results indicated that both LaSota and recombinant genotype VII vaccines offered full protection against challenge with AF2240-I. However, the LaSota vaccine only conferred partial protection against IBS002. In addition, significantly reduced viral shedding was observed in the recombinant genotype VII-vaccinated chickens compared to LaSota-vaccinated chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.