This study explores persistent homology to detect early warning signals of the 2017 and 2019 major financial crashes in Bitcoin. Sliding window is used to obtain point cloud datasets from a multidimensional time series (Bitcoin, Ethereum, Litecoin and Ripple). We apply persistent homology to quantify transient loops that appear in multiscale topological spaces, which associated on each point cloud dataset and encode the quantified information in a persistence landscape. Temporal changes in persistence landscapes are measured via their 1-norms. Consequently, a new representative is attained, called 1-norms time series. The 1-norms is associated with indicators: autocorrelation function at lag 1, variance and mean power spectrum at low frequencies to detect the signals. By using Kendall's tau correlation and significance test, significant rising trend events that occur before major financial crashes in Bitcoin are defined as the signals. A threshold is determined to scan entire data and record all the significant rising trend events. Lastly, we compare 1-norms with residuals time series, which is another representative obtained from de-trending approach. Our result portrays that autocorrelation function at lag 1 and variance of the 1-norms successfully detect early warning signals before the 2017 and 2019 major financial crashes. However, variance of the 1norms is better since it able to signal another 2018 major financial crash. For the residuals, no early warning signals are detected. Hence, persistent homology provides a better representative than de-trending approach. Overall, persistent homology is a promising method to detect early warning signals of major financial crashes in Bitcoin. INDEX TERMS Cryptocurrencies, bitcoin, persistent homology, critical transition, early warning signals.
In this study, a new market representation from persistence homology, known as the L1-norm time series, is used and applied independently with three critical slowing down indicators [autocorrelation function at lag 1, variance, and mean for power spectrum (MPS)] to examine two historical financial crises (Dotcom crash and Lehman Brothers bankruptcy) in the US market. The captured signal is the rising trend in the indicator time series, which can be determined by Kendall's tau correlation test. Furthermore, we examined Pearson's and Spearman's rho correlation tests as potential substitutes for Kendall's tau correlation. After that, we determined a correlation threshold and predicted the whole available date. The point of comparison between these correlation tests is to determine which test is significant and consistent in classifying the rising trend. The results of such a comparison will suggest the best test that can classify the observed rising trend and detect early warning signals (EWSs) of impending financial crises. Our outcome shows that the L1-norm time series is more likely to increase before the two financial crises. Kendall's tau, Pearson's, and Spearman's rho correlation tests consistently indicate a significant rising trend in the MPS time series before the two financial crises. Based on the two evaluation scores (the probability of successful anticipation and probability of erroneous anticipation), by using the L1-norm time series with MPS, our result in the whole prediction demonstrated that Spearman's rho correlation (46.15 and 53.85%) obtains the best score as compared to Kendall's tau (42.31 and 57.69%) and Pearson's (40 and 60%) correlations. Therefore, by using Spearman's rho correlation test, L1-norm time series with MPS is shown to be a better way to detect EWSs of US financial crises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.