Abnormal running kinematics are associated with an increased incidence of lower extremity injuries among runners. Accurate and unobtrusive running kinematic measurement plays an important role in the detection of gait abnormalities and the prevention of injuries among runners. Inertial-based methods have been proposed to address this need. However, previous methods require cumbersome sensor setup or participant-specific calibration. This study aims to validate a shoe-mounted accelerometer for sagittal plane lower extremity angle measurement during running based on a deep learning approach. A convolutional neural network (CNN) architecture was selected as the regression model to generalize in inter-participant scenarios and to minimize poorly estimated joints. Motion and accelerometer data were recorded from ten participants while running on a treadmill at five different speeds. The reference joint angles were measured by an optical motion capture system. The CNN model predictions deviated from the reference angles with a root mean squared error (RMSE) of less than 3.5° and 6.5° in intra- and inter-participant scenarios, respectively. Moreover, we provide an estimation of six important gait events with a mean absolute error of less than 2.5° and 6.5° in intra- and inter-participants scenarios, respectively. This study highlights an appealing minimal sensor setup approach for gait analysis purposes.
Continuous kinematic monitoring of runners is crucial to inform runners of inappropriate running habits. Motion capture systems are the gold standard for gait analysis, but they are spatially limited to laboratories. Recently, wearable sensors have gained attention as an unobtrusive method to analyze performance metrics and the health conditions of runners. In this study, we developed a system capable of estimating joint angles in sagittal, frontal, and transverse planes during running. A prototype with fiber strain sensors was fabricated. The positions of the sensors on the pelvis were optimized using a genetic algorithm. A cohort of ten people completed 15 min of running at five different speeds for gait analysis by our prototype device. The joint angles were estimated by a deep convolutional neural network in inter- and intra-participant scenarios. In intra-participant tests, root mean square error (RMSE) and normalized root mean square error (NRMSE) of less than 2.2° and 5.3%, respectively, were obtained for hip, knee, and ankle joints in sagittal, frontal, and transverse planes. The RMSE and NRMSE in inter-participant tests were less than 6.4° and 10%, respectively, in the sagittal plane. The accuracy of this device and methodology could yield potential applications as a soft wearable device for gait monitoring of runners.
Wearable electronics are recognized as a vital tool for gathering in situ kinematic information of human body movements. In this paper, we describe the production of a core–sheath fiber strain sensor from readily available materials in a one-step dip-coating process, and demonstrate the development of a smart sleeveless shirt for measuring the kinematic angles of the trunk relative to the pelvis in complicated three-dimensional movements. The sensor’s piezoresistive properties and characteristics were studied with respect to the type of core material used. Sensor performance was optimized by straining above the intended working region to increase the consistency and accuracy of the piezoresistive sensor. The accuracy of the sensor when tracking random movements was tested using a rigorous 4-h random wave pattern to mimic what would be required for satisfactory use in prototype devices. By processing the raw signal with a machine learning algorithm, we were able to track a strain of random wave patterns to a normalized root mean square error of 1.6%, highlighting the consistency and reproducible behavior of the relatively simple sensor. Then, we evaluated the performance of these sensors in a prototype motion capture shirt, in a study with 12 participants performing a set of eight different types of uniaxial and multiaxial movements. A machine learning random forest regressor model estimated the trunk flexion, lateral bending, and rotation angles with errors of 4.26°, 3.53°, and 3.44° respectively. These results demonstrate the feasibility of using smart textiles for capturing complicated movements and a solution for the real-time monitoring of daily activities.
(1) Background: Ankle joint power, as an indicator of the ability to control lower limbs, is of great relevance for clinical diagnosis of gait impairment and control of lower limb prosthesis. However, the majority of available techniques for estimating joint power are based on inverse dynamics methods, which require performing a biomechanical analysis of the foot and using a highly instrumented environment to tune the parameters of the resulting biomechanical model. Such techniques are not generally applicable to real-world scenarios in which gait monitoring outside of the clinical setting is desired. This paper proposes a viable alternative to such techniques by using machine learning algorithms to estimate ankle joint power from data collected by two miniature inertial measurement units (IMUs) on the foot and shank, (2) Methods: Nine participants walked on a force-plate-instrumented treadmill wearing two IMUs. The data from the IMUs were processed to train and test a random forest model to estimate ankle joint power. The performance of the model was then evaluated by comparing the estimated power values to the reference values provided by the motion tracking system and the force-plate-instrumented treadmill. (3) Results: The proposed method achieved a high accuracy with the correlation coefficient, root mean square error, and normalized root mean square error of 0.98, 0.06 w/kg, and 1.05% in the intra-subject test, and 0.92, 0.13 w/kg, and 2.37% in inter-subject test, respectively. The difference between the predicted and true peak power values was 0.01 w/kg and 0.14 w/kg with a delay of 0.4% and 0.4% of gait cycle duration for the intra- and inter-subject testing, respectively. (4) Conclusions: The results of this study demonstrate the feasibility of using only two IMUs to estimate ankle joint power. The proposed technique provides a basis for developing a portable and compact gait monitoring system that can potentially offer monitoring and reporting on ankle joint power in real-time during activities of daily living.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.