The recent legalization of Cannabis sativa L. in many regions has revealed a need for effective propagation and biotechnologies for the species. Micropropagation affords researchers and producers methods to rapidly propagate insect-/disease-/virus-free clonal plants and store germplasm and forms the basis for other biotechnologies. Despite this need, research in the area is limited due to the long history of prohibitions and restrictions. Existing literature has multiple limitations: many publications use hemp as a proxy for drug-type Cannabis when it is well established that there is significant genotype specificity; studies using drug-type cultivars are predominantly optimized using a single cultivar; most protocols have not been replicated by independent groups, and some attempts demonstrate a lack of reproducibility across genotypes. Due to culture decline and other problems, the multiplication phase of micropropagation (Stage 2) has not been fully developed in many reports. This review will provide a brief background on the history and botany of Cannabis as well as a comprehensive and critical summary of Cannabis tissue culture. Special attention will be paid to current challenges faced by researchers, the limitations of existing Cannabis micropropagation studies, and recent developments and future directions of Cannabis tissue culture technologies.
In vitro sterilization is a primary step of plant tissue culture which the ultimate results of in vitro culture are directly depended on the efficiency of the sterilization. Artificial intelligence models in a combination of optimization algorithms could be beneficial computational approaches for modeling and optimizing in vitro culture. The aim of this study was modeling and optimizing in vitro sterilization of chrysanthemum, as a case study, through Multilayer Perceptron- Non-dominated Sorting Genetic Algorithm-II (MLP-NSGAII). MLP was used for modeling two outputs including contamination frequency (CF), and explant viability (EV) based on seven variables including HgCl2, Ca(ClO)2, Nano-silver, H2O2, NaOCl, AgNO3, and immersion times. Subsequently, models were linked to NSGAII for optimizing the process, and the importance of each input was evaluated by sensitivity analysis. Results showed all of the R2 of training and testing data were over 94%. According to MLP-NSGAII, optimal CF (0%), and EV (99.98%) can be obtained from 1.62% NaOCl at 13.96 min immersion time. The results of sensitivity analysis showed that CF and EV were more sensitive to immersion time and less sensitive to AgNO3. Subsequently, the performance of predicted and optimized sterilants × immersion times combination were tested, and results indicated that the differences between the MLP predicted and validation data were negligible. Generally, MLP-NSGAII as a powerful methodology may pave the way for establishing new computational strategies in plant tissue culture.
A hybrid artificial intelligence model and optimization algorithm could be a powerful approach for modeling and optimizing plant tissue culture procedures. The aim of this study was introducing an Adaptive Neuro-Fuzzy Inference System- Non-dominated Sorting Genetic Algorithm-II (ANFIS-NSGAII) as a powerful computational methodology for somatic embryogenesis of chrysanthemum, as a case study. ANFIS was used for modeling three outputs including callogenesis frequency (CF), embryogenesis frequency (EF), and the number of somatic embryo (NSE) based on different variables including 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), sucrose, glucose, fructose, and light quality. Subsequently, models were linked to NSGAII for optimizing the process, and the importance of each input was evaluated by sensitivity analysis. Results showed that all of the R
2
of training and testing sets were over 92%, indicating the efficiency and accuracy of ANFIS on the modeling of the embryogenesis. Also, according to ANFIS-NSGAII, optimal EF (99.1%), and NSE (13.1) can be obtained from a medium containing 1.53 mg/L 2,4-D, 1.67 mg/L BAP, 13.74 g/L sucrose, 57.20 g/L glucose, and 0.39 g/L fructose under red light. The results of the sensitivity analysis showed that embryogenesis was more sensitive to 2,4-D, and less sensitive to fructose. Generally, the hybrid ANFIS-NSGAII can be recognized as a powerful computational tool for modeling and optimizing in plant tissue culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.