The chamazulene and α-(−)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(−)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011–2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L−1), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(−)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L−1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(−)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L−1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and α-(−)-bisabolol under normal and heat stress conditions.
It has been shown that cytomegalovirus (CMV) is present in coronary atherosclerotic plaques, but the clinical relevance of this presence remains to be elucidated. In this study we sought to examine CMV infection in atherosclerosis patients defined by different methods and to identify the clinical significance of CMV replication in the atherosclerotic plaques. The study included 105 consecutive patients who were admitted to our department and underwent coronary artery bypass grafting (CABG) surgical interventions. Coronary atherosclerotic specimens as well as 53 specimens from the mamillary artery of these same patients were analyzed. Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) methods were used for evaluations. The CMV PCR test result was positive for 28 (26.7%) of patients with coronary artery atherosclerosis. After adjusting for other risk factors, coronary artery disease patients with a history of acute coronary syndrome were more likely to be positive for CMV PCR test (P = 0.027; odds ratio: 4.2; 95% CI: 1.18-15.0). They were also more likely to have a positive family history for cardiovascular diseases (CVD). This study confirms previous evidence about the replication of CMV virus in the atherosclerotic plaques of coronary arteries and brings clinical significance to this observation by showing a higher prevalence of acute coronary syndromes in those patients with CMV-infected plaques. Our study also suggests a familial vulnerability to CMV replication in the coronary artery walls.
Abstract:The objective of this study was to investigate the effect of exogenous application of salicylic acid concentrations on the physiological and biochemical traits and essential oil content of chamomile under normal and heat stress conditions as induced by delayed sowing. The experiments were conducted during 2011-2012 as a factorial using a randomized complete block design with three replications, in a very hot region. The factors included five salicylic acid concentrations (0 (control), 1, 10, 25 and 100 mg¨L´1) and three chamomile cultivars (Bushehr, Bona, Bodegold). The seeds of chamomile were sown on two different sowing dates including an optimum planting date and a late planting date. The physiological traits (plant height, capitol diameter, 1000 grain weight, fresh and dried flower weight), total chlorophyll, proline and essential oil content were investigated. Analysis of variance showed that the effect of the environmental conditions (normal and heat stress) was significant on all physiological and biochemical traits with the exception of the essential oil content. The heat stress decreased physiological traits and total chlorophyll in comparison with the normal conditions but it had no significant effect on the essential oil content. Findings indicated that the application of exogenous salicylic acid improves essential oil content in chamomile cultivars under environmental heat stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.