The fluorescence behavior of several dipolar molecules has been studied in three room-temperature ionic liquids, namely, [BMIM][BF4], [EMIM][BF4], and [BMIM][PF6], as a function of the excitation wavelength. Although a large majority of these systems show normal fluorescence behavior with no excitation wavelength dependence, a few systems surprisingly exhibit fairly strong excitation-wavelength-dependent fluorescence behavior in these media. The excitation-wavelength-dependent shift of the fluorescence maximum is measured to be between 10 and 35 nm. The various fluorescence parameters of the systems have been carefully examined to determine the factors that contribute to this kind of behavior, generally not observed in conventional media. It is shown that the existence of a distribution of energetically different molecules in the ground state coupled with a low rate of the excited-state relaxation processes, viz., solvation and energy transfer, are responsible for the excitation-wavelength-dependent fluorescence behavior of some of the systems.
Rotational dynamics of two neutral organic solutes, coumarin-153 (C-153) and 4-aminophthalimide (AP), with only the latter having hydrogen-bond-donating ability, has been investigated in a series of 1-ethyl-3-methylimidazolium alkyl sulfate ionic liquids as a function of temperature. The ionic liquids differ only in the length of the linear alkyl side chain (alkyl = ethyl, butyl, hexyl, and octyl) on the anionic moiety. The present study has been undertaken to examine the role of alkyl side chains on the rotational dynamics of the two solutes in these ionic liquids. Analysis of the results using Stokes-Einstein-Debye hydrodynamic theory indicates that the rotational dynamics of C-153 lies between the stick and slip boundary condition in the ethyl analogue and finally reaches subslip condition as in case of the octyl substituent. The observed rotational behavior of C-153 has been explained on the basis of an increase in the size of the solvent, which offers lower friction for solute rotation. On the other hand, AP shows superstick behavior in the ethyl system and exceeds the stick limit in the octyl derivative. Superstick behavior of AP has been attributed to the specific hydrogen-bonding interaction between AP and the sulfate moiety. Proton NMR investigation confirms the hydrogen-bonding interaction between the N-H hydrogen of AP and the ionic liquid. The decrease in rotational coupling constant values for AP with increasing length of alkyl side chains has been attributed to the decrease in the solute-solvent-specific interaction with an increase in the alkyl side chain length on the sulfate moiety.
Intermolecular interactions, such as hydrogen bonding, dipolar and van der Waals, occurring in molecular crystals cover a range of magnitudes. As the crystal evolves from a relatively softer state in the nanoscopic size regime to a harder one in the microcrystalline and bulk solid state, the impact of the hierarchy of intermolecular interactions can be expected to emerge in a progressive fashion. The strongest interactions alone would be manifested at small sizes; as the crystal grows, the effect of the weaker ones will be added on, with the bulk crystals exhibiting the cumulative impact of the different interactions. We demonstrate this phenomenon through investigations of the solution, colloid, and solid state of a novel zwitterionic molecule based on the diaminodicyanoquinodimethane framework. A reprecipitation-digestion protocol is developed for the fabrication of nano/microcrystals of varying sizes. Microscopic and spectroscopic characterizations reveal tuning of the size and optical properties of this material. The optical absorption of the colloidal particles evolves with size towards that of the bulk solid, the emission showing a steady enhancement of intensity. Crystallographic investigations coupled with semiempirical computations provide a viable model to describe the range of observations in terms of the gradual accumulation of hierarchical intermolecular interactions.
Steady state and time-resolved fluorescence behavior of coumarin153 (C153) has been investigated in two ionic liquids (ILs), namely 1-(2-methoxyethyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([MOEMPL][FAP]) and 1-(2-methoxyethyl)-1-methylmorpholinium tris(pentafluoroethyl)trifluorophosphate ([MOEMMO][FAP]) in order to find out the viscosity-diffusion decoupling during solvation and rotational relaxation of C153. Thermophysical studies have also been carried out to understand the physicochemical properties of the media. At 293 K, the measured viscosity of [MOEMMO][FAP] is 8 times higher than that of [MOEMPL][FAP]. The data obtained from steady state and time-resolved fluorescence measurements show the deviation of average solvation and rotation times from conventional hydrodynamics. The decoupling of solute and solvent dynamics from medium viscosity is manifested through fractional viscosity dependence (η) of the measured average solvation (<τ(s)>) and rotation (<τ(r)>) times: <τ(x)> [proportionality] (η/T)(p) (x denotes solvation or rotation and T is the temperature) covering the p value 0.69 < p < 0.85 for solvent relaxation and 0.48 < p < 1.10 for solute rotation. The excitation wavelength dependent fluorescence studies have been performed to correlate the experimental findings with the heterogeneity of the medium. While the excitation wavelength dependent time-resolved fluorescence studies of coumarin153 reveal a very similar variation of average solvation time with a change in excitation wavelengths for both the ionic liquids, the steady state excitation wavelength dependent measurements of 2-amino-7-nitrofluorene (ANF) show a higher (630 cm(-1)) shift of the fluorescence maximum for highly viscous ionic liquid as compared to that (430 cm(-1)) of another much less viscous ionic liquid. The recent theoretical (Chem. Phys. Lett.2011, 517, 180) and experimental (J. Chem. Phys.2012, 136, 174503) findings and the outcome of the excitation wavelength dependent fluorescence measurements in the present case seem to suggest that both static and dynamic heterogeneity may play an important role in the observed viscosity-diffusion (d-η) decoupling for highly viscous ionic liquid.
Rotational relaxation dynamics of nonpolar perylene, dipolar coumarin 153, and a negatively charged probe, sodium 8-methoxypyrene-1,3,6-sulfonate (MPTS), have been investigated in a dicationic ionic liquid, 1,6-bis-(3-methylimidazolium-1-yl)hexane bis-(trifluoromethylsulfonyl)amide ([C6(MIm)2][NTf2]2), and a structurally similar monocationic ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C6MIm][NTf2]), to have a comprehensive and a quantitative understanding on the solute-solvent interaction in these media. Analysis of the rotational relaxation dynamics data by Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that perylene rotation is found to be the fastest compared to the other two probes and shows slip to sub-slip behavior, coumarin 153 rotation lies between the stick and slip boundary, and MPTS shows a superstick behavior in [C6MIm][NTf2]. Interestingly, MPTS exhibits a normal SED hydrodynamics in dicationic [C6(MIm)2][NTf2]2, in spite of the fact that dicationic ionic liquid contains two cationic sites bearing acidic hydrogen (C2-H) which may be available to form stronger interaction with the negatively charged MPTS. The difference in the rotational diffusion behavior of these three probes is a reflection of their location in different distinct environments of these ILs. Superstick behavior of MPTS in monocationic IL has been attributed to its specific hydrogen bonding interaction with the corresponding imidazolium cation. The relatively faster rotational behavior of MPTS in dicationic IL has been explained by resorting to mass spectrometry. Mass spectral analysis demonstrates that positively charged (imidazolium) sites in dicationic IL are strongly associated with negatively charged bis-(trifluoromethylsulfonyl)amide anion (NTf2(-)), which in turn makes it difficult for imidazolim cation to have stronger hydrogen bonding interaction with bulkier negatively charged molecule MPTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.