Recent studies demonstrate that effective healthcare can benefit from using the human genomic information. Consequently, many institutions are using statistical analysis of genomic data, which are mostly based on genome-wide association studies (GWAS). GWAS analyze genome sequence variations in order to identify genetic risk factors for diseases. These studies often require pooling data from different sources together in order to unravel statistical patterns, relationships between genetic variants and diseases. Here, the primary challenge is to fulfill one major objective: accessing multiple genomic data repositories for collaborative research in a privacy-preserving manner. Due to the privacy concerns regarding the genomic data, multi-jurisdictional laws and policies of cross-border genomic data sharing are enforced among different countries. In this article, we present SAFETY, a hybrid framework, which can securely perform GWAS on federated genomic datasets using homomorphic encryption and recently introduced secure hardware component of Intel Software Guard Extensions to ensure high efficiency and privacy at the same time. Different experimental settings show the efficacy and applicability of such hybrid framework in secure conduction of GWAS. To the best of our knowledge, this hybrid use of homomorphic encryption along with Intel SGX is not proposed to this date. SAFETY is up to 4.82 times faster than the best existing secure computation technique.
Genomic data hold salient information about the characteristics of a living organism. Throughout the past decade, pinnacle developments have given us more accurate and inexpensive methods to retrieve genome sequences of humans. However, with the advancement of genomic research, there is a growing privacy concern regarding the collection, storage and analysis of such sensitive human data. Recent results show that given some background information, it is possible for an adversary to reidentify an individual from a specific genomic data set. This can reveal the current association or future susceptibility of some diseases for that individual (and sometimes the kinship between individuals) resulting in a privacy violation. Regardless of these risks, our genomic data hold much importance in analyzing the well-being of us and the future generation. Thus, in this article, we discuss the different privacy and security-related problems revolving around human genomic data. In addition, we will explore some of the cardinal cryptographic concepts, which can bring efficacy in secure and private genomic data computation. This article will relate the gaps between these two research areas-Cryptography and Genomics.
BackgroundAdvances in DNA sequencing technologies have prompted a wide range of genomic applications to improve healthcare and facilitate biomedical research. However, privacy and security concerns have emerged as a challenge for utilizing cloud computing to handle sensitive genomic data.MethodsWe present one of the first implementations of Software Guard Extension (SGX) based securely outsourced genetic testing framework, which leverages multiple cryptographic protocols and minimal perfect hash scheme to enable efficient and secure data storage and computation outsourcing.ResultsWe compared the performance of the proposed PRESAGE framework with the state-of-the-art homomorphic encryption scheme, as well as the plaintext implementation. The experimental results demonstrated significant performance over the homomorphic encryption methods and a small computational overhead in comparison to plaintext implementation.ConclusionsThe proposed PRESAGE provides an alternative solution for secure and efficient genomic data outsourcing in an untrusted cloud by using a hybrid framework that combines secure hardware and multiple crypto protocols.
BackgroundWith the enormous need for federated eco-system for holding global genomic and clinical data, Global Alliance for Genomic and Health (GA4GH) has created an international website called beacon service which allows a researcher to find out whether a specific dataset can be utilized to his or her research beforehand. This simple webservice is quite useful as it allows queries like whether a certain position of a target chromosome has a specific nucleotide. However, the increased integration of individuals genomic data into clinical practice and research raised serious privacy concern. Though the answer of such queries are yes or no in Bacon network, it results in serious privacy implication as demonstrated in a recent work from Shringarpure and Bustamante. In their attack model, the authors demonstrated that with a limited number of queries, presence of an individual in any dataset can be determined.MethodsWe propose two lightweight algorithms (based on randomized response) which captures the efficacy while preserving the privacy of the participants in a genomic beacon service. We also elaborate the strength and weakness of the attack by explaining some of their statistical and mathematical models using real world genomic database. We extend their experimental simulations for different adversarial assumptions and parameters.ResultsWe experimentally evaluated the solutions on the original attack model with different parameters for better understanding of the privacy and utility tradeoffs provided by these two methods. Also, the statistical analysis further elaborates the different aspects of the prior attack which leads to a better risk management for the participants in a beacon service.ConclusionsThe differentially private and lightweight solutions discussed here will make the attack much difficult to succeed while maintaining the fundamental motivation of beacon database network.Electronic supplementary materialThe online version of this article (doi:10.1186/s12920-017-0278-x) contains supplementary material, which is available to authorized users.
According to a recent study, around 99% of hospitals across the US now use electronic health record systems (EHRs). One of the most common types of EHR is the unstructured textual data, and unlocking hidden details from this data is critical for improving current medical practices and research endeavors. However, these textual data contain sensitive information, which could compromise our privacy. Therefore, medical textual data cannot be released publicly without undergoing any privacy-protective measures. De-identification is a process of detecting and removing all sensitive information present in EHRs, and it is a necessary step towards privacy-preserving EHR data sharing. Over the last decade, there have been several proposals to de-identify textual data using manual, rule-based, and machine learning methods. In this article, we propose new methods to de-identify textual data based on the self-attention mechanism and stacked Recurrent Neural Network. To the best of our knowledge, we are the first to employ these techniques. Experimental results on three different datasets show that our model performs better than all state-of-the-art mechanism irrespective of the dataset. Additionally, our proposed method is significantly faster than the existing techniques. Finally, we introduced three utility metrics to judge the quality of the de-identified data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.