Formation of tubes of the correct size and shape is essential for viability of most organisms, yet little is understood of the mechanisms controlling tube morphology. We identified a new allele of hairy in a mutagenesis screen and showed that hairy mutations cause branching and bulging of the normally unbranched salivary tube, in part through prolonged expression of huckebein (hkb). HKB controls polarized cell shape change and apical membrane growth during salivary cell invagination via two downstream target genes, crumbs (crb), a determinant of the apical membrane, and klarsicht (klar), which mediates microtubule-dependent organelle transport. In invaginating salivary cells, crb and klar mediate growth and delivery of apical membrane, respectively, thus regulating the size and shape of the salivary tube.
The dynamic rearrangement of the actin cytoskeleton is fundamental to most biological processes including embryogenesis, morphogenesis, cell movement, wound healing and metastasis [1]. Membrane ruffling and reversible cell-substratum interactions underlie actin-driven cell movement. Protein kinase C (PKC) stimulates membrane ruffling and adhesion [2], but the mechanism by which this occurs is unknown. Myristoylated alaninerich C kinase substrate (MARCKS) is a PKC substrate that cycles on and off membranes by a mechanism termed the myristoyl-electrostatic switch [3-6]. While at the membrane, MARCKS binds to and sequesters acidic phospholipids including phosphatidyl-inositol-4,5-bisphosphate (PIP2) [7]. MARCKS also binds and cross-links filamentous actin, an activity which is regulated by PKC-dependent phosphorylation and calcium-calmodulin [3]. In this report, we demonstrate that expression, in fibroblasts, of MARCKS containing a mutation which abrogates the myristoyl-electrostatic switch prevents cell spreading. The MARCKS mutant arrests the cell during an early stage of spreading, characterized by profuse membrane blebbing, and prevents the formation of membrane ruffles and lamellae usually found at the leading edge of spreading cells. This defect in the regulation of the actin cytoskeleton is accompanied by a decrease in cell-substratum adhesion. Our results provide direct evidence that MARCKS and PKC regulate actin-dependent membrane ruffling and cell adhesion, perhaps via a PIP2-dependent mechanism.
Although the formation and maintenance of epithelial tubes are essential for the viability of multicellular organisms, our understanding of the molecular and cellular events coordinating tubulogenesis is relatively limited. Here, we focus on the activities of Ribbon, a novel BTB-domain containing nuclear protein, in the elongation of two epithelial tubes: the Drosophila salivary gland and trachea. We show that Ribbon interacts with Lola Like, another BTB-domain containing protein required for robust nuclear localization of Ribbon, to upregulate crumbs expression and downregulate Moesin activity. Our ultrastructural analysis of ribbon null salivary glands by TEM reveals a diminished pool of subapical vesicles and an increase in microvillar structure, cellular changes consistent with the known role of Crumbs in apical membrane generation and of Moesin in the cross-linking of the apical membrane to the subapical cytoskeleton. Furthermore, the subapical localization of Rab11, a small GTPase associated with apical membrane delivery and rearrangement, is significantly diminished in ribbon mutant salivary glands and tracheae. These findings suggest that Ribbon and Lola Like function as a novel transcriptional cassette coordinating molecular changes at the apical membrane of epithelial cells to facilitate tube elongation.
MARCKS is a protein kinase C (PKC) substrate which binds calcium/calmodulin and actin, and which has been implicated in cell motility, phagocytosis, membrane traffic, and mitogenesis. MARCKS cycles on and off the membrane via a myristoyl electrostatic switch (McLaughlin, S., and Aderem, A. (1995) Trends Biochem. Sci. 20, 272-276). Here we define the molecular determinants of the myristoyl-electrostatic switch. Mutation of the N-terminal glycine results in a nonmyristoylated form of MARCKS which does not bind membranes and is poorly phosphorylated. This indicates that myristic acid targets MARCKS to the membrane, where it is efficiently phosphorylated by PKC. A chimeric protein in which the N terminus of MARCKS is replaced by a sequence, which is doubly palmitoylated, is phosphorylated by PKC but not released from the membrane. Thus two palmitic acid moieties confer sufficient membrane binding energy to render the second, electrostatic membrane binding site superfluous. Mutation of the PKC phosphorylation sites results in a mutant which does not translocate from the membrane to the cytosol. A mutant in which the intervening sequence between the myristoyl moiety and the basic effector domain is deleted, is not displaced from the membrane by PKC dependent phosphorylation, fulfilling a theoretical prediction of the model. In addition to the nonspecific membrane binding interactions conferred by the myristoyl-electrostatic switch, indirect immunofluorescence microscopy demonstrates that specific protein-protein interactions also specify the intracellular localization of MARCKS.The myristoylated alanine-rnich C kinase substrate, MARCKS, 1 is a widely distributed, PKC substrate, that is phosphorylated during secretion, mitogenesis, and phagocyte activation (1, 2). Rotary shadowing experiments demonstrate that MARCKS is an elongated, rod-shaped molecule (3), an observation confirmed by a high axial ratio (4) and circular dichroic spectral analysis (5). The sequences of bovine, chicken, murine, rat, and human MARCKS have been determined, and they demonstrate a number of interesting features: the amino acid compositions are unusually rich in alanine, glycine, proline, and glutamate; the coding molecular masses (29 -31 kDa) differ significantly from the electrophoretic molecular masses (67-87 kDa); there is a highly conserved N-terminal region and a highly conserved effector domain, the latter containing phosphorylation sites and calmodulin-and actin binding sites (3, 6 -11). The interaction of MARCKS with calmodulin and actin is regulated in a complicated manner. First, MARCKS binds to calmodulin only in the presence of calcium, and the phosphorylation of MARCKS prevents this interaction (11). Second, MARCKS binds to the sides of actin filaments and cross-links them, and this cross-linking activity is disrupted by both phosphorylation of MARCKS and by calcium-calmodulin (3).MARCKS has a punctate distribution in macrophages, and many of the structures containing MARCKS are found at the substrate-adherent surface of pseudop...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.