Bacterioplankton growth is expected to depend on the availability of organic and inorganic nutrients. Still, no studies have investigated how the magnitude and type of nutrient limitation experienced by marine bacteria change on a temporal scale. We carried out a series of nutrient enrichment experiments to examine the variability in nutrient limitation of bacteria in the NW Mediterranean Sea, at monthly intervals, over an 18 mo period. Short-term enrichment bioassays (24 h incubation) showed that bacterial P limitation could occur throughout the year, but was most pronounced during spring and summer, coinciding with very low concentrations of dissolved inorganic phosphorus and chlorophyll a, and higher N:P ratios. During the non-stratified period in autumn and winter, bacteria were at times strongly C limited. Inorganic nitrogen limitation was not detected at any time. Long-term bioassays with and without enrichment, where growth was monitored until stationary phase using the seawater dilution culture approach, largely confirmed the results from the short-term bioassays. Analysis of the bacterial assemblages in these cultures, using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene sequencing, suggested that the growth of some central components of the native bacterioplankton assemblage (i.e. specific Roseobacter and Flavobacteria phylotypes) was restricted due to the limited availability of P in spring and summer. We conclude that seasonal variability in the type and severity of nutrient limitation can substantially contribute to the regulation of bacterioplankton growth and community composition, and thereby affect the turnover of dissolved organic matter and inorganic nutrients in the sea.
Climate warming affects the development and distribution of sea ice, but at present the evidence of polar ecosystem feedbacks on climate through changes in the atmosphere is sparse. By means of synergistic atmospheric and oceanic measurements in the Southern Ocean near Antarctica, we present evidence that the microbiota of sea ice and sea ice-influenced ocean are a previously unknown significant source of atmospheric organic nitrogen, including low molecular weight alkyl-amines. Given the keystone role of nitrogen compounds in aerosol formation, growth and neutralization, our findings call for greater chemical and source diversity in the modelling efforts linking the marine ecosystem to aerosol-mediated climate effects in the Southern Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.