Digitization and automation have always had an immense impact on healthcare. It embraces every new and advanced technology. Recently the world has witnessed the prominence of the metaverse which is an emerging technology in digital space. The metaverse has huge potential to provide a plethora of health services seamlessly to patients and medical professionals with an immersive experience. This paper proposes the amalgamation of artificial intelligence and blockchain in the metaverse to provide better, faster, and more secure healthcare facilities in digital space with a realistic experience. Our proposed architecture can be summarized as follows. It consists of three environments, namely the doctor’s environment, the patient’s environment, and the metaverse environment. The doctors and patients interact in a metaverse environment assisted by blockchain technology which ensures the safety, security, and privacy of data. The metaverse environment is the main part of our proposed architecture. The doctors, patients, and nurses enter this environment by registering on the blockchain and they are represented by avatars in the metaverse environment. All the consultation activities between the doctor and the patient will be recorded and the data, i.e., images, speech, text, videos, clinical data, etc., will be gathered, transferred, and stored on the blockchain. These data are used for disease prediction and diagnosis by explainable artificial intelligence (XAI) models. The GradCAM and LIME approaches of XAI provide logical reasoning for the prediction of diseases and ensure trust, explainability, interpretability, and transparency regarding the diagnosis and prediction of diseases. Blockchain technology provides data security for patients while enabling transparency, traceability, and immutability regarding their data. These features of blockchain ensure trust among the patients regarding their data. Consequently, this proposed architecture ensures transparency and trust regarding both the diagnosis of diseases and the data security of the patient. We also explored the building block technologies of the metaverse. Furthermore, we also investigated the advantages and challenges of a metaverse in healthcare.
Detection of the state of mind has increasingly grown into a much favored study in recent years. After the advent of smart wearables in the market, each individual now expects to be delivered with state-of-the-art reports about his body. The most dominant wearables in the market often focus on general metrics such as the number of steps, distance walked, heart rate, oximetry, sleep quality, and sleep stage. But, for accurately identifying the well-being of an individual, another important metric needs to be analyzed, which is the state of mind. The state of mind is a metric of an individual that boils down to the activity of all other related metrics. But, the detection of the state of mind has formed a huge challenge for the researchers as a single biosignal cannot propose a particular decision threshold for detection. Therefore, in this work, multiple biosignals from different parts of the body are used to determine the state of mind of an individual. The biosignals, blood volume pulse (BVP), and accelerometer are intercepted from a wrist-worn wearable, and electrocardiography (ECG), electromyography (EMG), and respiration are intercepted from a chest-worn pod. For the classification of the biosignals to the multiple state-of-mind categories, a multichannel convolutional neural network architecture was developed. The overall model performed pretty well and pursued some encouraging results by demonstrating an average recall and precision of 97.238% and 97.652% across all the classes, respectively.
In this study, we are proposing a practical way for human identification based on a new biometric method. The new method is built on the use of the electrocardiogram (ECG) signal waveform features, which are produced from the process of acquiring electrical activities of the heart by using electrodes placed on the body. This process is launched over a period of time by using a recording device to read and store the ECG signal. On the contrary of other biometrics method like voice, fingerprint and iris scan, ECG signal cannot be copied or manipulated. The first operation for our system is to record a portion of 30 seconds out of whole ECG signal of a certain user in order to register it as user template in the system. Then the system will take 7 to 9 seconds in authenticating the template using template matching techniques. 44 subjects" raw ECG data were downloaded from Physionet website repository. We used a template matching technique for the authentication process and Linear SVM algorithm for the classification task. The accuracy rate was 97.2% for the authentication process and 98.6% for the classification task; with false acceptance rate 1.21%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.