Formaldehyde (FA) is the leading cause of cellular injury and oxidative damage in testis that is one of the main infertility causes. There has been an increasing evidence of herbal remedies use in male infertility treatment. This assay examines the role of Ficus carica (Fc) leaf extracts in sperm parameters and testis of mice intoxicated with FA. Twenty-five adult male mice were randomly divided into control; sham; FA-treated (10 mg/kg twice per day); Fc-treated (200 mg/kg); and FA + Fc-treated groups. Cauda epididymal spermatozoa were analyzed for viability, count, and motility. Testes were weighed and gonadosomatic index (GSI) was calculated. Also, histoarchitecture of seminiferous tubules was assessed in the Haematoxylin and Eosin stained paraffin sections. The findings showed that FA significantly decreased GSI and increased percentage of immotile sperm compared with control group. Disorganized and vacuolated seminiferous epithelium, spermatogenic arrest, and lumen filled with immature germ cells were also observed in the testes. However, Fc leaf extracts improved sperm count, nonprogressive motility of spermatozoa, and GSI in FA-treated testes. Moreover, seminiferous tubule with spermatogenic arrest was rarely seen, indicating that Fc has the positive effects on testis and epididymal sperm parameters exposed with FA.
Introduction Cinnamon is one of the most common spices that has been studied for its anti-inflammatory, antioxidant, and antibacterial properties in wound healing. The purpose of this study was to evaluate the effectiveness of polycaprolactone nanofiber mats coated with chitosan microcapsules loaded with cinnamon essential oil in wound healing. Material and methods For this purpose, chitosan microcapsules containing cinnamon essential oil (µCS-CiZ) were prepared by ion gelation and PCL nanofibers by electrospinning. The size of the µCS-CiZ and the morphology of nanofibers were evaluated by DLS and FESEM methods. In order to evaluate wound healing, 48 rats in 4 groups of Control, µCS-CiZ, PCL, and PCL + µCS-CiZ and were examined on days 7, 14, and 21 in terms of macroscopy (wound closure rate) and histology (edema, inflammation, vascularity, fibrotic tissue, and re-epithelialization). Results The particle size of the µCS-CiZ and the diameter of the nanofibers were estimated at about 6.33 ± 1.27 μm and 228 ± 33 nm, respectively. On day 21, both µCS-CiZ and PCL groups showed a significant decrease in wound size compared to the control group (P < 0.001). The PCL + µCS-CiZ group also showed a significant decrease compared to the µCS-CiZ (P < 0.05) and PCL groups (P < 0.05). Histological results showed further reduction of edema, inflammation, and vascularity in granulation tissue and appearance of moderate to marked fibrotic tissue in PCL + µCS-CiZ group compared with the other groups. Conclusion The results of the study showed that the combined use of PCL + µCS-CiZ indicates a synergistic effect on improving wound healing.
Introduction: Cinnamon is one of the most common spices that have been studied for its anti-inflammatory, antioxidant, and antibacterial properties in wound healing. The purpose of this study was to evaluate the effectiveness of polycaprolactone nanofiber mats coated with chitosan microcapsules loaded with cinnamon essential oil on wound healing. Material and methods: For this purpose, chitosan microcapsules containing cinnamon essential oil (µCS-CiZ) were prepared by ion gelation and PCL nanofibers by electrospinning. The size of the µCS-CiZ and the morphology of nanofibers were evaluated by DLS and FESEM methods. In order to evaluate wound healing, 48 rats in 4 groups of control, µCS-CiZ, nanofibers, and nanofibers coated with µCS-CiZ (PCL+µCS-CiZ) were examined on days 7, 14, and 21 in terms of macroscopy (wound closure rate) and histology (edema, inflammation, vascularity, fibrotic tissue, and re-epithelialization). Results: The particle size of the µCS-CiZ and the diameter of the nanofibers were estimated at about 6.33±1.27 μm and 228 ± 33 nm, respectively. On day 21, both µCS-CiZ and PCL groups showed a significant decrease in wound size compared to the control group (p<0.001). The PCL+µCS-CiZ group also showed a significant decrease compared to the µCS-CiZ (p<0.05) and PCL groups (p<0.05). Histological results showed further reduction of edema, inflammation, and vascularity in granulation tissue, and appearance of moderate to marked fibrotic tissue in PCL+µCS-CiZ group compared with the other groups. Conclusion: The results of the study showed that the combined use of PCL+µCS-CiZ indicates a synergistic effect in improving wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.