Guaiacol novolak (GCN) and wood-tar creosote novolak (WCN) were synthesized by the reactions of wood-derived guaiacol and creosote with formalin, respectively, and used as hardeners of sorbitol polyglycidyl ether (SPE). Thermal and mechanical properties of the cured resins (SPE-GCN and SPE-WCN) and their biocomposites with wood flour (WF) were compared with those of the materials prepared by using a petroleum-based phenol novolak (PN). Although tan d peak temperatures of SPE-GCN and SPE-WCN were lower than that of SPE-PN, that (58.5-70.8 C) of SPE-GCN/WF(40-50 wt %) was higher than that (56.6-57.0 C) of SPE-PN/WF(40-50 wt %). Tensile moduli of all the biocomposites increased by the addition of WF, while tensile strengths were rather reduced. When the biocomposites with the same WF content were compared, tensile modulus of SPE-GCN/WF was higher than that of SPE-PN/WF. The 5% weight loss temperatures (346-291 C) of SPE-GCN and SPE-GCN/WF were comparable to those (338-284 C) of SPE-PN and SPE-PN/WF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.