Sorption properties of materials based on sodium liquid glass modified by polyvinyl alcohol and polyvinylpyrrolidone on regarding to different acid-base indicators were investigated. The effect of the nature of metal and polymer modifier (polyvinyl alcohol and polyvinylpyrrolidone) on the amount of active centers and specific active surface area of such material was determined. Moisture absorption of modified and not modified silicate materials was founded. The effect of Ni-containing polymer-silicate materials on the speed of curing of compositions based on unsaturated polyester resins was determined.
PSS electrodes, and 96% of initial strain after demonstration over 18 000 cycles), provide remarkable electro-chemo-mech anical properties: specific capacitance, electrical conductivity, and large surface area with mesoporosity.
Polymer blending coupled with nanofillers has been widely accepted as one of the cheaper methods to develop highperformance polymeric materials for various applications. In the present work, dodecyl sulfate intercalated Mg-Al-based layered double hydroxide (DS-LDH) was used as nanofiller in the synthesis of polyurethane blended with nitrile butadiene rubber (PU/NBR; 1 : 1 w/w) nanocomposites, which were subsequently characterized. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the partial dispersion of Mg-Al layers in PU/NBR blends at lower filler content followed by aggregation at higher filler loading. In comparison to the neat PU/NBR blend, the tensile strength (156%) and elongation at break (21%) show maximum improvement for 1 wt% filler loading. The storage and loss moduli, thermal stability and limiting oxygen index of the nanocomposites are higher compared to the neat PU/NBR blend. Glass transition temperature and swelling measurements increase up to 3 wt% DS-LDH loading in PU/NBR compared to either neat PU/NBR or its other corresponding nanocomposites. XRD and TEM analyses indicate the partial distribution of DS-LDH in PU/NBR blends suggesting the formation of partially exfoliated nanocomposites. The improvements in mechanical, thermal and flame retardancy properties are much greater compared to the neat blend confirming the formation of high-performance polymer nanocomposites.
Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications.
Ionic soft actuators, which exhibit large mechanical deformations under low electrical stimuli, are attracting attention in recent years with the advent of soft and wearable electronics. However, a key challenge for making highperformance ionic soft actuators with large bending deformation and fast actuation speed is to develop a stretchable and flexible electrode having high electrical conductivity and electrochemical capacitance. Here, a functionally antagonistic hybrid electrode with hollow tubular graphene meshes and nitrogen-doped crumpled graphene is newly reported for superior ionic soft actuators. Three-dimensional network of hollow tubular graphene mesh provides high electrical conductivity and mechanically resilient functionality on whole electrode domain. On the contrary, nitrogen-doped wrinkled graphene supplies ultrahigh capacitance and stretchability, which are indispensably required for improving electrochemical activity in ionic soft actuators. Present results show that the functionally antagonistic hybrid electrode greatly enhances the actuation performances of ionic soft actuators, resulting in much larger bending deformation up to 620%, ten times faster rise time and much lower phase delay in a broad range of input frequencies. This outstanding enhancement mostly attributes to exceptional properties and synergistic effects between hollow tubular graphene mesh and nitrogen-doped crumpled graphene, which have functionally antagonistic roles in charge transfer and charge injection, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.